Single Channel, High Speed Optocouplers

Technical Data

6N135/6
HCNW135/6
HCNW4502/3
HCPL-2502
HCPL-0452/3
HCPL-0500/1
HCPL-4502/3

Features

- $15 \mathrm{kV} / \mu \mathrm{s}$ Minimum Common Mode Transient Immunity at $\mathbf{V}_{\mathrm{CM}}=1500 \mathrm{~V}(4503 / 0453)$
- High Speed: 1 Mb/s
- TTL Compatible
- Available in 8-Pin DIP, SO-8, Widebody Packages
- Open Collector Output
- Guaranteed Performance from Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Safety Approval

UL Recognized - 2500 V rms
for 1 minute (5000 V rms for
1 minute for HCNW and
Option 020 devices) per
UL1577
CSA Approved
VDE 0884 Approved
$-\mathrm{V}_{\text {IORM }}=630 \mathrm{~V}$ peak for HCPL-4503\#060
$-\mathrm{V}_{\text {IORM }}=1414 \mathrm{~V}$ peak for HCNW devices

- Dual Channel Version Available (253X/4534/053X/ 0534)
- MIL-STD-1772 Version Available (55XX/65XX/4N55)

Applications

- High Voltage Insulation
- Video Signal Isolation
- Power Transistor Isolation in Motor Drives
- Line Receivers
- Feedback Element in Switched Mode Power Supplies
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ CMOS, TTL/LSTTL
- Replaces Pulse Transformers
- Replaces Slow Phototransistor Isolators
- Analog Signal Ground Isolation

Functional Diagram

* NOTE: FOR 4502/3, 0452/3, PIN 7 IS NOT CONNECTED.

Description

These diode-transistor optocouplers use an insulating layer between a LED and an integrated photodetector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output-transistor collector increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

These single channel optocouplers are available in 8-Pin DIP, SO-8 and Widebody package configurations.

The 6N135, HCPL-0500, and HCNW135 are for use in TTL/ CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for these devices is 7% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The 6N136, HCPL-2502, HCPL-0501, and HCNW136 are designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough
output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR for these devices is 19% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-4502, HCPL-0452, and HCNW4502 provide the electrical and switching performance of the 6N136, HCPL-0501, and HCNW136 with increased ESD protection.

The HCPL-4503, HCPL-0453, and HCNW4503 are similar to the HCPL-4502, HCPL-0452, and HCNW4502 optocouplers but have increased common mode transient immunity of $15 \mathrm{kV} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ guaranteed.

* NOTE: FOR HCPL-4502/-3, HCPL-0452/3, HCNW4502/3, PIN 7 IS NOT CONNECTED.

Selection Guide

Minimum CMR		Current Transfer Ratio (\%)	8-Pin DIP (300 Mil)		Small-Outline SO-8		Widebody (400 Mil) Single Channel Package	Hermetic Single and Dual Channel Packages**
dV/dt ($\mathrm{V} / \mu \mathrm{s}$)	$\begin{aligned} & \mathbf{V}_{\mathbf{C M}} \\ & \text { (V) } \end{aligned}$		Single Channel Package	Dual Channel Package*	Single Channel Package	Dual Channel Package*		
1,000	10	7	6N135	HCPL-2530	HCPL-0500	HCPL-0530	HCNW135	
		19	6 N 136 HCPL-4502 $\dagger ~$	HCPL-2531	$\begin{aligned} & \text { HCPL-0501 } \\ & \text { HCPL-0452† } \end{aligned}$	HCPL-0531	HCNW136 HCNW4502†	
		15	HCPL-2502					
15,000	1500	19	HCPL-4503 \dagger	HCPL-4534	HCPL-0453†	HCPL-0534	HCNW4503†	
1,000	10	9						$\begin{gathered} \text { HCPL-55XX } \\ \text { HCPL-65XX } \\ \text { 4N55 } \end{gathered}$

*Technical data for these products are on separate Agilent publications.
\dagger Pin 7 , transistor base, is not connected.

Ordering Information

Specify Part Number followed by Option Number (if desired).

Example:

HCPL-4503\#XXX

$$
\begin{aligned}
-020 & =\text { UL } 5000 \mathrm{~V} \mathrm{rms} / 1 \text { Minute Option* } \\
-060 & =\text { VDE } 0884 \mathrm{~V}_{\text {Iorm }}=630 \mathrm{~V} \text { peak Option } * * \\
300 & =\text { Gull Wing Surface Mount Option } \dagger \\
500 & =\text { Tape and Reel Packaging Option }
\end{aligned}
$$

Option data sheets available. Contact your Agilent sales representative or authorized distributor for information.
*For 6N135/6 and HCPL-4502/3 only.
**For HCPL-4503 only. Combination of Option 020 and Option 060 is not available.
\dagger Gull wing surface mount option applies to through hole parts only.

Package Outline Drawings

8-Pin DIP Package (6N135/6, HCPL-4502/3, HCPL-2502)

8-Pin DIP Package with Gull Wing Surface Mount Option 300 (6N135/6, HCPL-4502/3)

Small Outline SO-8 Package (HCPL-0500/1, HCPL-0452/3)

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES) MAX.

8-Pin Widebody DIP Package (HCNW135/6, HCNW4502/3)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW135/6, HCNW4502/3)

PAD LOCATION (FOR REFERENCE ONLY)

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).

Solder Reflow Temperature Profile (HCPL-0500/1, HCPL-0452/3, and Gull Wing Surface Mount Option Parts)

Note: Use of Non-Chlorine Activated Fluxes is Recommended.

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL

Recognized under UL 1577, Component Recognition Program, File E55361.

CSA

Approved under CSA Component Acceptance Notice \#5, File CA 88324.

VDE

Approved according to VDE 0884/06.92 (HCNW and Option 060 devices only).

Insulation and Safety Related Specifications

| Parameter | Symbol | 8-Pin DIP
 (300 Mil)
 Value | SO-8
 Value | Widebody
 (400 Mil)
 Value | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |$|$| L(101) |
| :--- |
| 7.1 |
| 4.9 |
| Minimum External
 Air Gap (External
 Clearance) |
| Minimum External
 Tracking (External
 Creepage) |
| L(102) |
| Minimum Internal
 Plastic Gap
 (Internal Clearance) |

Option 300-surface mount classification is Class A in accordance with CECC 00802.

VDE 0884 Insulation Related Characteristics
 (HCPL-4503 OPTION 060 ONLY)

Description	Symbol	Characteristic	Units
```Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage \(\leq 300 \mathrm{~V} \mathrm{rms}\) for rated mains voltage \(\leq 450 \mathrm{~V} \mathrm{rms}\)```		I-IV	
		I-III	
Climatic Classification		55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	630	V peak
Input to Output Test Voltage, Method b*   $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	1181	V peak
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	945	V peak
Highest Allowable Overvoltage*   (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {IOTM }}$	6000	V peak
Safety Limiting Values   (Maximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.)   Case Temperature   Input Current   Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{S}} \\ \mathrm{I}_{\mathrm{S}, \text { INPUT }} \\ \mathrm{P}_{\mathrm{S}, \text { OUTPUT }} \\ \hline \end{gathered}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \\ & \hline \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{S}}$	$\geq 10^{9}$	$\Omega$

## VDE 0884 Insulation Related Characteristics (HCNW135/6, HCNW4502/3 ONLY)

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 600 \mathrm{~V} \mathrm{rms}$		I-IV	
for rated mains voltage $\leq 1000 \mathrm{~V}$ rms		I-III	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1414	V peak
Input to Output Test Voltage, Method b*   $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$,   Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	2652	V peak
Input to Output Test Voltage, Method a* $\mathrm{V}_{\mathrm{IORM}} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	2121	V peak
Highest Allowable Overvoltage*   (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {IOTM }}$	8000	V peak
Safety Limiting Values   (Maximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.)   Case Temperature   Input Current   Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{S}} \\ \mathrm{I}_{\mathrm{S}, \text { INPUT }} \\ \mathrm{P}_{\mathrm{S}, \text { OUTPUT }} \end{gathered}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{S}}$	$\geq 10^{9}$	$\Omega$

[^0]
## Absolute Maximum Ratings


*Data has been registered with JEDEC for the 6N135/6N136.

## Electrical Specifications (DC)

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ unless otherwise specified. See note 13 .


[^1]**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications (AC)

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

*For JEDEC registered parts.
$* *$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Package Characteristics

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage**	$\mathrm{V}_{\text {ISO }}$	$\begin{gathered} \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$	2500			V rms	$\begin{aligned} & \mathrm{RH}<50 \%, \\ & \mathrm{t}=1 \mathrm{~min}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		6,14
		Widebody	5000						6, 15
		8-Pin DIP (Option 020)	5000						$\begin{gathered} 6,12, \\ 15 \end{gathered}$
	$\mathrm{I}_{\text {I-O }}$	8-Pin DIP			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3 \mathrm{kVdc}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		6, 16
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	$\begin{aligned} & \text { 8-Pin DIP } \\ & \text { SO-8 } \end{aligned}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\text {I- }}=500 \mathrm{Vdc}$		6
		Widebody	$10^{12}$	$10^{13}$			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
			$10^{11}$				$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I} \mathrm{O}}$	$\begin{gathered} \hline \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		6
		Widebody		0.5	0.6				

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or HP Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

## Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(8$-Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ (SO-8).
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(8$-Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ (SO-8).
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ( 8 -Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (SO-8).
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(8-\mathrm{Pin} \mathrm{DIP})$. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (SO-8).
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $\mathrm{I}_{\mathrm{O}}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times 100.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV} \mathrm{V}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
11. The JEDEC registration for the 6 N136 specifies a minimum CTR of $15 \%$. Agilent guarantees a minimum CTR of $19 \%$.
12. See Option 020 data sheet for more information.
13. Use of a $0.1 \mu \mathrm{f}$ bypass capacitor connected between pins 5 and 8 is recommended.
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 5 \mu \mathrm{~A}$ ). This test is performed before the $100 \%$ Production test shown in the VDE 0884 Insulation Related Characteristics Table if applicable.
15. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 5 \mu \mathrm{~A}$ ). This test is performed before the $100 \%$ Production test shown in the VDE 0884 Insulation Related Characteristics Table if applicable.
16. This rating is equally validated by an equivalent ac proof test.


Figure 1. DC and Pulsed Transfer Characteristics.


Figure 2. Current Transfer Ratio vs. Input Current.


Figure 3. Input Current vs. Forward Voltage.


Figure 4. Current Transfer Ratio vs. Temperature.


Figure 5. Propagation Delay vs. Temperature.


Figure 6. Propagation Delay Time vs. Load Resistance.


Figure 7. Logic High Output Current vs. Temperature.


Figure 8. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.


Figure 9. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.


Figure 10. Frequency Response.


Figure 11. Switching Test Circuit.


Figure 12. Test Circuit for Transient Immunity and Typical Waveforms.


[^0]:    *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description.
    Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

[^1]:    *For JEDEC registered parts.

