Toneluck Switches

PB Push button switch

Characteristics

- Exclusive spring -loaded contacts with audio bridge "point" make the perfect mechanism for long electrical life
- Various stroke 3.5, 2.5 or 1.5 mm
- A wide range of standard operating force available
- Handle current from $0.1 \mathrm{~A} \sim 1.0 \mathrm{~A}$
- Single chassis and mounting frame are available
- Built-in LED version available
- Various pin configurations for different PCB
- Various house material: UL94V0, Nylon, PBT, etc.

Electrical Data							
Electrical ratings \& Operating life	$0.10 \mathrm{~A} / 30 \mathrm{~V} \mathrm{DC}$ 80,000 $0.20 \mathrm{~A} / 24 \mathrm{~V} \mathrm{DC}$ 50,00 $0.50 \mathrm{~A} / 30 \mathrm{~V} \mathrm{DC}$ 10,000 $1.00 \mathrm{~A} / 25 \mathrm{~V} \mathrm{DC}$ 10,000 $0.20 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}$ 5,00 $0.50 \mathrm{~A} / 100 \mathrm{~V} \mathrm{AC}$ 5,00	$\begin{aligned} & \text { les } \\ & \text { les } \\ & \text { cles } \\ & \text { cles } \\ & \text { les } \\ & \text { les } \end{aligned}$					
Dielectric strength	$1500 \mathrm{VAC}, 50 \sim 60 \mathrm{~Hz}$, for 1 min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.						
Contact resistance	$20 \mathrm{~m} \Omega$ (max)						
Insulation resistance	$1000 \mathrm{M} \Omega$ (min)						
Mechanical Data							
Travel to lock distance	$3.5,2.5,1.5+/-0.3 \mathrm{~mm}$						
Total travel distance	$4.8,3.5,2.5+/-0.3 \mathrm{~mm}$						
Operating force(min)	No of Poles	2P	4P	6 P	8P	10P	16P
		350gf	450gf	550gf	650gf	650 gf	700gf
		210 gf	400gf	400gf			
LED Data							
LED types	3 mm Round 5 mm Round $3.4 \times 1.1 \mathrm{~mm}$ Rectangular $3.9 \times 1.9 \mathrm{~mm}$ Rectangular $5.0 \times 2.0 \mathrm{~mm}$ Rectangular $2.0 \times 5.0 \mathrm{~mm}$ Triangular $3.0 \times 4.5 \mathrm{~mm}$ Triangular $5.6 \times 4.9 \mathrm{~mm}$ Triangular			r customer specified specification			
Further Data							
Operating temperature	$-20 \sim+85 \mathrm{C}$						
Contact arrangement	Total travel distance 4.8 mm : $2 \sim 16$ poles Total travel distance $3.5 \& 2.5 \mathrm{~mm}: 2 \sim 4$ poles						
Terminals	Standard PCB through hole terminal Crimped terminal Ag Plating (Au Plating is available upon request)						
Function	Momentary Self-lock Inter-lock						
Mounting	Hole Diameter: $2 \times 3.2 \mathrm{~mm}$ Hole Diameter: $2 \times 2.4 \mathrm{~mm}$ Thread Specification: 2 x [M3 x 0.5 mm] Mounting Ear Cut						
Chassis Pitch	$10,12.5,15,17.5 \& 20 \mathrm{~mm}$						
Buttons	BF series all models BC \& LED series caps (with windows) for illuminated version						
Actuator dimensions	$3.3 \times 3.3 \mathrm{~mm}$						
Plastic material	UL94V-0, UL94V-2, UL94HB						
Max. soldering temperature	5 second at 260C						

Gang switches
Push button switch with led

Terminal type Standard PCB Pins

A	18.0 mm
B	19.0 mm
C	14.0 mm
E	25.0 mm
F	13.0 mm
H	30.5 mm
K	16.0 mm
M	21.0 mm
R	26.5 mm
S	12.8 mm only available for $1.5 \& 2.5 \mathrm{~mm}$ travel-to-lock version

Mounting Ear cut

LED Specifications

3mm Round

LED Type	Color	Wavelength	Intensity /	ncd)	Size/shape	Remarks
R02	Red Diffused	700 nm	$1.3 \sim 5.0$	10 mA	3 mm Round	
R01	Red Diffused	625 nm	$0.8 \sim 5.0$	2 mA	3 mm Round	Low current
R03	Red Diffused	660 nm	$8 \sim 20$	2 mA	3 mm Round	Low current \& super bright
G03	Green Diffused	565 nm	8~32	10 mA	3 mm Round	
G01	Green Diffused	565 nm	$0.8 \sim 3.2$	2 mA	3 mm Round	Low current \& bright
Y03	Yellow Diffused	590 nm	$8 \sim 32$	10 mA	3 mm Round	
Y01	Yellow Diffused	590 nm	$0.8 \sim 3.2$	2 mA	3 mm Round	Low current \& bright
R04	Red Diffused	700 nm	$2 \sim 8$	10 mA	5 mm Round	
R05	Red Diffused	625 nm	$0.8 \sim 5$	2 mA	5 mm Round	Low current
R06	Red Diffused	660 nm	$8 \sim 20$	2 mA	5 mm Round	Low current \& super bright
G02	Green Diffused	565 nm	$5 \sim 32$	10 mA	5 mm Round	
G04	Green Diffused	565 nm	$0.8 \sim 3.2$	2 mA	5mm Round	Low current
Y02	Yellow Diffused	590 nm	5~32	10 mA	5 mm Round	
Y04	Yellow Diffused	590 nm	$0.8 \sim 32$	2 mA	5 mm Round	Low current
R07	Red Diffused	700 nm	$0.2 \sim 0.5$	10 mA	3 mm Rectangular	
LED Type	Color	Wavelength	Intensity / Iv(med)		Size/shape	Remarks
R08	Red Diffused	625 nm	$2 \sim 12.5$	10 mA	3mm Rectangular	High effective
G05	Green Diffused	565 nm	$2 \sim 8$	10 mA	3mm Rectangular	
Y05	Yellow Diffused	590 nm	$2 \sim 8$	10 mA	3 mm Rectangular	
R09	Red Diffused	700 nm	$0.5 \sim 2.0$	10 mA	5mm Rectangular	
R10	Red Diffused	625 nm	$3.2 \sim 12.5$	10 mA	5mm Rectangular	High effective
R11	Red Diffused	660 nm	$40 \sim 80$	20 mA	5mm Rectangular	Super bright
G06	Green Diffused	565 nm	$2 \sim 8$	10 mA	5 mm Rectangular	
Y06	Yellow Diffused	590 nm	$2 \sim 8$	10 mA	5mm Rectangular	
R12	Red Diffused	700 nm	$0.5 \sim 0.8$	10 mA	3 mm Triangular	
R13	Red Diffused	625 nm	$2 \sim 5$	10 mA	3mm Triangular	High effective
G07	Green Diffused	565 nm	$1.25 \sim 3.2$	10 mA	3 mm Triangular	
Y07	Yellow Diffused	590 nm	$1.25 \sim 3.2$	10 mA	3 mm Triangular	
R13	Red Diffused	700 nm	0.5-0.8	10 mA	5.6 mm Triangular	
R14	Red Diffused	625 nm	5-12.5	10 mA	5.6 mm Triangular	High effective
G08	Green Diffused	565 nm	2-8	10 mA	5.6 mm Triangular	
Y08	Yellow Diffused	590 nm	2-5	10 mA	5.6 mm Triangular	

Ordering Instructions

```
PBN- \underline{S 2 }\underline{\mathbf{A}}-\underline{\mathbf{1.5}}\underline{\textrm{H}}-\underline{\textrm{RO1}}\underline{\textrm{L}}-\mathbf{xxxx}
    1
```

1: $\mathrm{PBN}=$ Normal $\quad \mathrm{PBV}=$ Valox material

2: Functions
S = Self lock
$\mathrm{N}=$ Non-lockp)

3: No. of poles $-2,4,6,8,10,16$
4: Terminal type -A, B, C, E, F, H, K, M, R, S
5: Travel to lock distance $-1.5,2.5,3.5 \mathrm{~mm}$
6: Mounting Type

H: Hole Diameter: $2 \times$ ö 3.2 mm
G: Hole Diameter: $2 \times$ ö 2.4 mm
T: Thread Specification: 2 x [M3 x 0.5 mm]
C: Mounting Ear Cut
Nil: Without Mount

7: LED specification (ignored if no LED)
8: LED Position (relative to plunger, ignored if no LED)
$\mathrm{L}=$ Left \quad (Plunger points inward, latch pin u
R = Right
$\mathrm{U}=\mathrm{Up}$
D = Down

9: Spec code
Specification code will be assigned by Toneluck to differentiate any minor changes from standard version.

Gang Switch
$\frac{\mathbf{P B N}}{1}-\underset{2}{\mathbf{5}}-\frac{\mathbf{1 7 . 5}}{3} \frac{\mathbf{H}}{4}-\underset{5}{\mathrm{xxxx}}$
$1=$ Series code
2 = Total no. of keys
3 = Pitch distance of mounting
$4=$ Mounting type
H: Hole Diameter: 2xö 3.2 mm
G: Hole Diameter: 2xö 2.4mm
T: Thread Specification: $2 \times$ [M3 x 0.5 mm]
C: Mounting Ear Cut
$5=$ Specification code will be assigned by Toneluck to differentiate any minor changes from standard version

No of Keys

Key No.\#	Switch Part Number	Function (select one only)				Pitch (p)	Button P/N
		Self Lock	Non-lock	Inter-lock	Reset		
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

MPN Miniature Push Button Switch

Characteristics

- Mini size and short stroke with good "hand-feel"
- Wiping \& bifurcated contacts for smooth, silent actuation stroke and reliable contacts
- Snap-in mounting bracket available
- Gold plated terminals version for professional audio equipments
- Small contact resistance
- Handle current from 0.1A/30VDC ~ 1.0A/13VDC
- Wide operating temperature range: $-25 \sim+125 \mathrm{C}$
- Chassis mounting/Inter-lock available
- UL94V0 housing material

Electrical Data	
Electrical ratings \&	$0.10 \mathrm{~A} / 30 \mathrm{~V}$ DC 20,000 cycles (min)
Operating life	$1.00 \mathrm{~A} / 13 \mathrm{~V}$ DC 20,000 cycles(min)
Dielectric strength	$500 \mathrm{VAC}, 50 \sim 60 \mathrm{~Hz}$, for 1 min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.
Contact resistance	$50 \mathrm{~m} \Omega$ (max)
Insulation resistance	$100 \mathrm{M} \Omega$ (min)
Mechanical Data	
Travel to lock distance	2.0 mm
Total travel distance	3.0 mm
Operating force	2 Pole: $160+/-50 \mathrm{gf}, \quad 220+/-50 \mathrm{gf}$ 4 Pole: $280+/-50 \mathrm{gf}$ 6 Pole: 330 +/- 50gf
Further Data	
Operating temperature	$\begin{aligned} & -25 \sim+85 \mathrm{C} \\ & -25 \sim+125 \mathrm{C} \end{aligned}$
Circuit configuration	2 Poles, 4 Poles, 6 Poles
Terminals	Straight PCB pins Snap in terminal
Function	Momentary Self-lock Inter-lock
Buttons	MF series all models
Actuator dimensions	$2.8 \times 2.8 \mathrm{~mm}$
Plastic material	UL94HB UL94V-0
Max. soldering temperature	5 second at 260 C

Miniature Push button switch

MPN 6-poles switch

Chassis for Miniature Push Button Switch
Standard single chassis

Ordering Instructions

MPN - $\underline{\mathbf{S}} \underline{\mathbf{2}} \underline{\mathbf{H}}$ - $\underline{\text { xxxx }}$

1234
1: Functions

$$
\begin{aligned}
& \text { S = Self Lock; } \\
& \text { N = Non-lock }
\end{aligned}
$$

2: No. of poles : 2, 4, 6
3: Mounting Type
H: Hole Diameter: 2xö 3.2mm
G: Hole Diameter: 2xö 2.4 mm
T: Thread Specification: 2 x [M3 x 0.5 mm]
C: Mounting Ear Cut
D: With PCB metal holder
Nil: Without Mount
4: Specification code
Specification code will be assigned by Toneluck to differentiate any minor changes from standard version.

Gang Switch

$$
\begin{aligned}
& \frac{\text { MPN }}{1}-\frac{\mathbf{5}}{2}-\frac{\mathbf{1 7 . 5}}{3} \frac{\mathbf{H}}{4}-\frac{\mathbf{x x x x}}{5} \\
& 1=\text { Series code } \\
& 2=\text { Total no. of keys } \\
& 3=\text { Pitch distance of mounting } \\
& 4=\text { Mounting type } \\
& \quad \text { H: Hole Diameter: } 2 \times \ddot{0} 3.2 \mathrm{~mm} \\
& \quad \text { G: Hole Diameter: } 2 \times 0 \ddot{0} 2.4 \mathrm{~mm} \\
& \text { T: Thread Specification: } 2 \times \text { [M3 x } 0.5 \mathrm{~mm}] \\
& \text { C: Mounting Ear Cut } \\
& 5 \text { = Specification code will be assigned by Toneluck to differentiate any minor changes from standard version }
\end{aligned}
$$

MPV Vertical Push Button Switch

Characteristics

- Mini size and short stroke with good "hand-feel"
- Wiping \& bifurcated contacts for smooth, silent actuation stroke and reliable contacts
- Snap-in mounting bracket available
- Various terminals version for professional audio equipments and telephones
- Small contact resistance
- Handle current $0.1 \mathrm{~A} / 30 \mathrm{VDC}, 0.1 \mathrm{~A} / 60 \mathrm{VDC}$
- Operating temperature range: $-20 \sim+85 \mathrm{C}$
- Chassis mounting/Inter-lock available

Electrical Data	
Electrical ratings	0.10A/30V DC 0.1A/60V DC
Operating life	20,000 cycles (min) 20,000 cycles(min)
Dielectric strength	$500 \mathrm{VAC}, 50 \sim 60 \mathrm{~Hz}$, for 1 min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.
Contact resistance	$30 \mathrm{~m} \Omega$ (max)
Insulation resistance	$100 \mathrm{M} \Omega$ (min)
Mechanical Data	
Travel to lock distance	2.0 mm
Total travel distance	3.0 mm
Operating force	2 Pole: $200+/-100 \mathrm{gf}$, 4 Pole: $250+/-100 \mathrm{gf}$ 6 Pole: $330+/-100 \mathrm{gf}$
Further Data	
Operating temperature	-25~+65 C
Circuit configuration	2 Poles, 4 Poles, 6 Poles
Terminals	Straight PCB pins Crimped terminal
Function	Momentary Self-lock Inter-lock Reset
Buttons	BC, BF series all models
Actuator dimensions	$3.3 \times 3.3 \mathrm{~mm}$
Plastic material	UL94V-0 UL94HB
Max. soldering temperature	5 second at 260 C

Vertical Push-button switch

Ordering Instructions

$\mathrm{MPV}-\underline{\mathrm{S}} \underline{\mathbf{2}}-\underline{\mathbf{8 . 0}} \frac{\mathbf{H}}{\mathbf{H}}-\mathrm{Xxxx}$

1: Functions
S = Self Lock;
$\mathrm{N}=$ Non-lock
2: No. of poles : 2, 4, 6
3: Plunger height : 7.0 / 8.0 / 9.5 / 12.5 mm
4: Mounting Type
H: Hole Diameter: 2xö 3.2mm
G: Hole Diameter: 2xö 2.4 mm
T: Thread Specification: 2 x [M3x 0.5 mm]
C: Mounting Ear Cut
Nil: Without Mount
5: Specification code
Specification code will be assigned by Toneluck to differentiate any minor changes from standard version.

Gang Switch

```
MPV
```

$1=$ Series code
2 = Total no. of keys
$3=$ Pitch distance of mounting (12.5/15/17.5/19/20 mm)
$4=$ Mounting type
H: Hole Diameter: 2xö 3.2mm
G: Hole Diameter: 2xö 2.4 mm
T: Thread Specification: 2 x [M3 x 0.5 mm]
C: Mounting Ear Cut
$5=$ Specification code will be assigned by Toneluck to differentiate any minor changes from standard version

Key No.\#	Switch Part Number	Function (select one only)				Pitch (p)	Button P/N
		Self Lock	Non-lock	Inter-lock	Reset		
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

LTV vertical push switch

Characteristics

- Mini size and short stroke with good "hand-feel"
- Wiping \& bifurcated contacts for smooth, silent actuation stroke and reliable contacts
- Handle current from 0.1A~1.0A
- Long electrical life cycles
- LED available at different position from actuator
- Various caps for standard and illumated switches
- Various pin configurations for different PCB
- Various house material: UL94V0, Nylon, PBT, etc.
- Actuator length available from 5.7-16.5mm

Actuator Type: LTV-85 (2P2T), LTV-86 (2P1T)

For LTV-87 (4P2T)

Terminal types: LTV-85, LTV-86

Switch Base/Position Pins

LED Specifications
3mm Round
5mm Round
3mm Rectangular
Smm Rectangular
Tolerance: $+/-0.25 \mathrm{~mm}$

5.6mm Triangular

LED Type	Color	Wavelength	Intensity / Iv(mcd)		Size/shape	
R02	Red Diffused	700 nm	$1.3 \sim 5.0$	10 mA	3 mm Round	
R01	Red Diffused	625 nm	$0.8 \sim 5.0$	2 mA	3 mm Round	Low current
R03	Red Diffused	660 nm	$8 \sim 20$	2 mA	3 mm Round	Low current \& super bright
G03	Green Diffused	565 nm	$8 \sim 32$	10 mA	3 mm Round	
G01	Green Diffused	565 nm	$0.8 \sim 3.2$	2 mA	3 mm Round	Low current \& bright
Y03	Yellow Diffused	590 nm	$8 \sim 32$	10 mA	3 mm Round	
Y01	Yellow Diffused	590 nm	$0.8 \sim 3.2$	2 mA	3 mm Round	Low current \& bright
R04	Red Diffused	700 nm	$2 \sim 8$	10 mA	5 mm Round	
R05	Red Diffused	625 nm	$0.8 \sim 5$	2 mA	5 mm Round	Low current
R06	Red Diffused	660 nm	$8 \sim 20$	2 mA	5 mm Round	Low current \& super bright
G02	Green Diffused	565 nm	$5 \sim 32$	10 mA	5 mm Round	
G04	Green Diffused	565 nm	$0.8 \sim 3.2$	2 mA	5 mm Round	Low current
Y02	Yellow Diffused	590 nm	$5 \sim 32$	10 mA	5 mm Round	
Y04	Yellow Diffused	590 nm	$0.8 \sim 32$	2 mA	5 mm Round	Low current
R07	Red Diffused	700 nm	$0.2 \sim 0.5$	10 mA	3 mm Rectangular	
R						

LED Type	Color	Wavelength	Intensity / Iv(mcd)	Size/shape	Remarks	
R08	Red Diffused	625 nm	$2 \sim 12.5$	10 mA	3 mm Rectangular	High effective
G05	Green Diffused	565 nm	$2 \sim 8$	10 mA	3 mm Rectangular	
-05	Yellow Diffused	590 nm	$2 \sim 8$	10 mA	3 mm Rectangular	
R09	Red Diffused	700 nm	$0.5 \sim 2.0$	10 mA	5 mm Rectangular	
R10	Red Diffused	625 nm	$3.2 \sim 12.5$	10 mA	5 mm Rectangular	High effective
R11	Red Diffused	660 nm	$40 \sim 80$	20 mA	5 mm Rectangular	Super bright
G06	Green Diffused	565 nm	$2 \sim 8$	10 mA	5 mm Rectangular	
Y06	Yellow Diffused	590 nm	$2 \sim 8$	10 mA	5 mm Rectangular	
R12	Red Diffused	700 nm	$0.5 \sim 0.8$	10 mA	3 mm Triangular	
R13	Red Diffused	625 nm	$2 \sim 5$	10 mA	3 mm Triangular	High effective
G07	Green Diffused	565 nm	$1.25 \sim 3.2$	10 mA	3 mm Triangular	
Y07	Yellow Diffused	590 nm	$1.25 \sim 3.2$	10 mA	3 mm Triangular	
R13	Red Diffused	700 nm	$0.5-0.8$	10 mA	5.6 mm Triangular	
R14	Red Diffused	625 nm	$5-12.5$	10 mA	5.6 mm Triangular	High effective
G08	Green Diffused	565 nm	$2-8$	10 mA	5.6 mm Triangular	
Y08	Yellow Diffused	590 nm	$2-5$	10 mA	5.6 mm Triangular	

Ordering Instructions

$$
\begin{aligned}
& \text { LTV - } \frac{\mathbf{8 5}}{1} \frac{\mathbf{S}}{2} \frac{\mathbf{0}}{3} \frac{\mathbf{N}}{4} \frac{5.7}{5}-\frac{\mathbf{R 0 1}}{6} \frac{\mathbf{A}}{7}-\frac{\mathbf{X x x x}}{8} \\
& \text { 1: Series } \\
& 85=2 \mathrm{P} 2 \mathrm{~T} \\
& 86=2 \mathrm{P} 1 \mathrm{~T} \text { (normal open) } \\
& \text { 2: Functions } \\
& \text { S = Lock } \\
& \mathrm{N}=\text { Non-lock } \\
& \text { 3: Base/Position Pin } \\
& 0=\text { No position pin } \\
& 1=\text { Two same size small position pins } \\
& 2=\text { Two different size position pins } \\
& \text { 4: Terminal shape } \\
& \mathrm{N}=\text { Standard } 3.4 \mathrm{~mm} \text { long straight pcb pin } \\
& \mathrm{D}=\text { Snap in pins } / 3.4 \mathrm{~mm} \\
& \mathrm{Z}=\text { Pins bent out (SMT) } \\
& \mathrm{L}=7.5 \mathrm{~mm} \text { long terminal } \\
& \text { 5: Actuator type } \\
& \text { 6: LED type (ignored if no LED) } \\
& \text { * Ref. to LED spec table for standard types } \\
& \text { * Contact Toneluck for custom-made items } \\
& \text { 7: LED positions relative to plunger (ignored if no } L E D \text {) } \\
& \mathrm{A}=\text { left hand side, } 6.4 \mathrm{~mm} \text { from plunger } \\
& \text { Direction: Latching pin point inwards } \\
& B=\text { left hand side, } 8.4 \mathrm{~mm} \text { from plunger } \\
& \text { 8: Specification code } \\
& \text { Specification code will be assigned by Toneluck to differentiate } \\
& \text { any minor changes from standard version. }
\end{aligned}
$$

LTV-87 $\underline{\mathbf{S}} \underline{0} \underline{N} 5.7-\underline{\operatorname{xxxx}}$
$1 \frac{1}{2} 34$

1: Functions S = Lock $\mathrm{N}=$ Non-lock
2: Base type $0=$ No position pin
3: Terminal type $\mathrm{N}=$ standard through hole pcb $\mathrm{D}=$ RDI/Snap in pins
4: Actuator height: 5.7 mm

Characteristics

- Snap-in mounting bracket available
- Individual/ chassis/inter-lock modules available
- Different travel distances
- Wide operating temperature range: $-40 \sim+85 \mathrm{C}$
- High tracking resistance version available
- UL94V0 housing material available
- Snap-on caps in a variety of shapes \& colors
- Compliant to major safety standards

*Please contact Toneluck for specifications other than the above standard options.
Dimensions: PWL-1P1T

Mounting Types: PWL-1P1T
H: Hole Diameter: 2xö 3.2mm
G: Hole Diameter: 2xö 2.4mm
T :Thread Specification: $\mathbf{2 x}$ [M3 x 0.5 mm]

D: with PCB metal holder

Dimensions: PWL-2P

Mounting Types: PWL-2P

Cases Type: PWL-2P

P: with 2 plastic supports base	K: with 2 plastic pcb holder \& position pin	F: PCB pins in opposite direction
Ref to drawing below		

Case Type F: PWL-2P

Ordering Information

PWL- $\underline{\text { 2P1TL }-\underline{6}} \underline{\mathbf{S}} \underline{\mathbf{A}} \frac{\mathrm{~K}}{5} \underline{\mathbf{H}}-\mathrm{xxxx}$

1: Circuit configurations 2P2T : Normal 2P2T circuit 2P1TR : 2P1T / normal closed circuit \quad * Direction: Latch pin up, plunger point inward 2P1TL : 2P1T / normal opened circuit 1P2TL: 1P2T / using left hand side circuit 1P2TR : 1P2T/ using right hand side circuit
2: Current Rating: $6=6 \mathrm{~A} / 250 \mathrm{VAC}$
3: Lock function S = Lock $\mathrm{N}=$ non-lock
4: Terminal Configuration
A: with both PCB pins \& Solder Lugs
B: PCB only
C: Solder lugs only
5: Case Types
S: Standard type
P: With two plastic supports base
K : with plastic pcb holders \& position pin F: PCB pin in opposite direction
6: Mounting type
H: Hole Diameter: 2xö 3.2 mm
G: Hole Diameter: 2xö 2.4 mm
T: Thread Specification: $2 \times$ [M3 x 0.5 mm]
C: Mounting Ear Cut
Nil: Without Mount

PWL - 1P1T $-\underline{4} \underline{\mathbf{S}} \frac{\mathbf{S}}{2} \frac{\mathbf{P}}{\mathbf{1}} \frac{\mathbf{1} 5}{4} \frac{\mathbf{H}}{5}-\mathbf{x x x x}$

1: Current Rating :
$4=4 \mathrm{~A} / 250 \mathrm{~V}$ AC
$10=10 \mathrm{~A} / 250 \mathrm{~V}$ AC
2: Lock Function S=Self-lock $\mathrm{N}=$ Non-lock
3: Terminal type $\mathrm{A}=$ Solder lugs terminal $\mathrm{P}=\mathrm{PCB}$ pin
4: Travel to lock distance $1.5=1.5 \mathrm{~mm}$ $2.5=2.5 \mathrm{~mm}$
5: Mounting type
H: Hole Diameter: 2xö 3.2mm
G: Hole Diameter: 2xö 2.4 mm
T :Thread Specification: 2 x [M3 x 0.5 mm]
C: Mounting Ear Cut at both ends
D: With PCB Holder
Nil: Without Mount

Notes:

1. Please contact Toneluck or her representatives for details on switch modules
2. The "****" is a 4 digits specification code assigned by Toneluck for individual customer specification

Gang Switch

```
PWL - 5 - 17.5 [- # - xxxx
    1 = Series code
2 = Total no. of keys
3 = Pitch distance of mounting
4 = Mounting type
    H: Hole Diameter: 2xö 3.2mm
    G: Hole Diameter: 2xö 2.4mm
    T:Thread Specification: 2x [M3 x 0.5mm]
    C: Mounting Ear Cut
    5 = Specification code will be assigned by Toneluck to differentiate any minor changes from standard version
```


No of Keys

Key No.\#	Switch Part Number	Function (select one only)				Pitch (p)	Button P/N
		Self Lock	Non-lock	Inter-lock	Reset		
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

MQS-1 Subminiature Snap Action Switch

Characteristics

- Mini size high performance snap action switches - Wide switching capacity from $0.1 \mathrm{~A} \sim 10 \mathrm{~A} / 250 \mathrm{VAC}$
- Optional gold contacts for low energy applications
- Wide operating temperature range: $-25 \sim+85 \mathrm{C}$
- Reduced contact gap distance version available
- Custom made levers \& different operating force
- Compliant to major safety standards
- Optional movement differential travel distance for different applications

Electrical Data		
Electrical Ratings \&	0.2A/48VDC 25 T 85	1,000,000 cycles
Operating life cycles	$3 \mathrm{~A} 125 / 250 \mathrm{VAC} 25 \mathrm{~T} 85$	50,000 cycles
	5A 125/250VAC 25 T 85	50,000 cycles
	10A 125/250VAC 25 T 85	10,000 cycles
Dielectric strength	$1,000 \mathrm{VAC}, 50 \sim 60 \mathrm{~Hz}$, for 1 min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.	
Contact resistance	$30 \mathrm{~m} \Omega$ (max, silver contacts)	
Insulation resistance	$100 \mathrm{M} \Omega$ (min)	
Mechanical Data		
Movement Differential Travel	Standard type: 0.2mm (max)	
*Note 1	Shorter type : 0.1 mm (max)	
Operating force (pin plunger/no lever type)	$80 \pm 20 \mathrm{gf}$	
	$130 \pm 20 \mathrm{gf}$	
	$160 \pm 30 \mathrm{gf}$	
	$230 \pm 40 \mathrm{gf}$	
Further Data		
Operating temperature	$-25 \sim+85 \mathrm{C}$	
Circuit configuration	SPDT	
	SPST-NO	
	SPST-NC	
Terminals	Quick Connect Terminal	
	Solder Terminal	
	PCB Terminal	
	PCB Right Angle Terminal	
Housing material	Thermoplastic	
Flammability Rating	UL94V-0	
Proof Tracking Index (PTUCTI)	$175 \mathrm{~V}$	
(PTI/CTI)	250 V	

Ordering Information

```
MQS-1 1 A & 80NP - Xxxx
            12345 6
    1: Ratings/Series
        1=0.2\textrm{A}/48\textrm{V DC }
        2=3A/250V AC }4=10\textrm{A}/250\textrm{V AC
    2: Lever Type
        A, B, C, D, ...Z
        N = No Lever
    3: Operating force
        Operating force measured at the tip of the actuator
        Refer to following table for the operating force of individual lever type
    4: Contact Gap: N= Normal type(Movement differential travel:0.2mm max)
            R = Quick Return(Movement differential travel: 0.1mm mas)
        5: Terminal type
        P}=\textrm{PCB}\mathrm{ terminal
        A=Solder Lugs
        B=Right Angle
        D=Quick connect Terminal
```

6: Spec code which to be assigned by Toneluck for individual customer specification

Terminal Type

Type P: PCB Terminal

$1=\mathrm{COM}$
$2=\mathrm{NC}$
$3=\mathrm{NO}$

Type B: Right Angle PCB Terminal

Circuit Configurations

Installation
Mounting Holes

Lever Type	Dimensions	Operating Force (gf)	$\begin{gathered} R F \\ \text { (gf min.) } \end{gathered}$	$\begin{gathered} \mathrm{OP} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{PT} \\ (\mathrm{~mm} \text { max. }) \end{gathered}$	$\text {) } \begin{gathered} \text { OT } \\ (\mathrm{mm} \text { min. }) \end{gathered}$	$\begin{gathered} M D \\ (m m \text { max. }) \end{gathered}$	$\left(\begin{array}{c} F P \\ (m m \text { max. } \end{array}\right.$
N		80 ± 20	10	8.4 ± 0.5	0.6	0.5	0.2	
		130 ± 20	25	8.4 ± 0.5	0.6			
		160 ± 30	35	8.4 ± 0.5	0.8			
		230 ± 40	55	8.4 ± 0.5	0.8			
A		20 ± 10	5	9.7 ± 1.0	2.8	1.0	1.0	12.5
		30 ± 10	5	9.4 ± 1.0	3.0			
		40 ± 15	8	9.0 ± 1.0	3.5			
		50 ± 20	10	9.0 ± 1.0	3.5			
B		25 ± 10	5	9.7 ± 1.0	2.8	1.0	1.0	12.5
		35 ± 15	5	9.4 ± 1.0	3.0			
		45 ± 15	8	9.0 ± 1.0	3.5			
		65 ± 20	15	9.0 ± 1.0	3.5			
C		15 ± 10	5	15.4 ± 0.8	2.0	1.0	1.0	17.5
		30 ± 10	5	15.0 ± 0.8	2.5			
		40 ± 15	8	14.5 ± 0.8	3.0			
		55 ± 20	15	14.5 ± 0.8	3.0			
D		20 ± 10	5	11.4 ± 0.8	2.2	1.0	1.0	13.6
		35 ± 15	5	11.0 ± 0.8	2.6			
		45 ± 15	10	10.6 ± 0.8	3.0			
		65 ± 20	15	10.5 ± 0.8	3.0			
E		20 ± 10	5	13.5 ± 0.8	2.3	1.0	1.0	15.3
		40 ± 15	8	13.2 ± 0.8	2.5			
		50 ± 20	10	12.7 ± 0.8	3.0			
		65 ± 20	15	12.7 ± 0.8	3.0			
H		10 ± 5	2	10.7 ± 1.5	3.0	1.5	2.0	13.7
		20 ± 10	5	10.0 ± 1.5	3.7			
		25 ± 10	5	9.2 ± 1.5	4.5			
		35 ± 10	5	9.2 ± 1.5	4.5			

Lever Type	Dimensions	Operating Force (gf)	$\begin{gathered} R F \\ \text { (gf min.) } \end{gathered}$	$\begin{gathered} \mathrm{OP} \\ (\mathrm{~mm}) \end{gathered}$	$\left\lvert\, \begin{gathered} \text { PT } \\ (\text { mm max. }) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \mathrm{OT} \\ (\mathrm{~mm} \text { min. }) \end{gathered}\right.$	$\begin{gathered} \text { MD } \\ \text { (mm max. }) \end{gathered}$	$\begin{gathered} \text { FP } \\ (m m \text { max. } \end{gathered}$
K		12 max.	3	15.5 ± 2.0	5.5	2.0	2.5	22.0
P		30 ± 15	5	12.5 ± 1.0	2.0	0.8	0.8	14.5
		45 ± 15	8	12.0 ± 1.0	3.0			
		60 ± 20	15	12.0 ± 1.0	3.0			
		75 ± 20	20	12.0 ± 1.0	3.0			
Q		25 ± 10	5	13.0 ± 0.8	2.2	0.6	0.8	15.2
		40 ± 15	8	12.7 ± 0.8	2.5			
		60 ± 20	15	12.5 ± 0.8	2.7			
		75 ± 20	20	12.5 ± 0.8	2.7			
R		15 ± 10	5	16.7 ± 1.2	2.5	1.5	1.5	19.5
		25 ± 10	8	16.3 ± 1.2	2.9			
		35 ± 15	10	15.6 ± 1.2	3.5			
		45 ± 20	15	15.6 ± 1.2	3.5			
T		40 ± 15	8	9.2 ± 0.8	1.6	0.5	0.8	10.8
		65 ± 20	15	9.0 ± 0.8	1.8			
		100 ± 30	25	8.9 ± 0.8	2.0			
		120 ± 30	30	8.9 ± 0.8	2.0			
W		20 ± 10	5	14.3 ± 1.0	2.2	0.8	1.0	16.4
		40 ± 15	8	14.0 ± 1.0	2.5			
		50 ± 20	10	13.4 ± 1.0	3.0			
		65 ± 20	15	13.4 ± 1.0	3.0			
Z		30 ± 10	8	9.5 ± 0.8	2.5	0.5	0.8	11.3
		40 ± 20	10	9.2 ± 0.8	2.8			
		60 ± 20	15	8.9 ± 0.8	3.0			
		75 ± 25	25	8.9 ± 0.8	3.0			

Characteristics

- Mini size high performance snap action switches
- Wide switching capacity from $0.2 \mathrm{~A} \sim 10 \mathrm{~A} / 250 \mathrm{VAC}$
- Optional gold contacts for low energy applications
- Wide operating temperature range: $-25 \sim+85 \mathrm{C}$
- Reduced contact gap distance version available
- Custom made levers \& different operating force
- Compliant to major safety standards
- Optional movement differential travel distance for different applications

Electrical Data		
Electrical Ratings \&	0.2A/48VDC 25 T 85	1,000,000 cycles
Operating life cycles	3A 125/250VAC 25 T85	50,000 cycles
	5A 125/250VAC 25 T 85	50,000 cycles
	10A 125/250VAC 25 T 85	10,000 cycles
Dielectric strength	$1,000 \mathrm{VAC}, 50 \sim 60 \mathrm{~Hz}$, for 1 min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.	
Contact resistance	$30 \mathrm{~m} \Omega$ (max, silver contacts)	
Insulation resistance	$100 \mathrm{M} \Omega$ (min)	
Mechanical Data		
Movement Differential Travel	0.1 mm (max)	
Operating force	$50 \pm 10 \mathrm{gf}$ (for pin plunger/no lever type only, refer to attached table for operating force with lever)	
Further Data		
Operating temperature	$-25 \sim+85 \mathrm{C}$	
Circuit configuration	SPDT SPST-NO SPST-NC	
Terminals	Quick Connect Terminal Solder Terminal Bent Terminal	
Housing material	Thermosetting Plastic	
Flammability Rating	UL94V-0	
Proof Tracking Index (PTI/CTI)	175 V	

Ordering Information

MQS- 1s $\frac{1}{1} \frac{\mathbf{A}}{2} \frac{80 N}{34} \frac{\mathbf{P}}{5}-\frac{\mathbf{x x x x}}{6}$
 $\frac{1}{1} \frac{\mathbf{A}}{2} \frac{80}{34} \frac{\mathbf{P}}{5} \frac{\mathbf{N X X}}{6}$

1: Ratings/Series

$$
\begin{array}{ll}
1=0.2 \mathrm{~A} / 48 \mathrm{~V} \mathrm{DC} & 3=5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\
2=3 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} & 4=10 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}
\end{array}
$$

2: Lever Type

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \ldots . \mathrm{Z}
$$

$\mathrm{N}=$ No Lever
3: Operating force
Operating force measured at the tip of the actuator Refer to following table for the operating force of individual lever type
4: Contact Gap
$\mathrm{N}=$ Normal type(Movement differential travel: 0.1 mm max)
$\mathrm{R}=$ Quick Return Type (under development)
5: Terminal type
A=Solder Lugs
B=Bent Terminal
D=Quick Connect Terminal
6: Spec code which to be assigned by Toneluck for individual customer specification

Mounting Holes

Type C: Bent Terminal

Type D: Quick Connect Terminal

Circuit Configurations

Lever Type

Lever Type	Dimensions	Standard Operating Force Releasing Force (gf)	$\begin{gathered} \mathbf{O P} \\ (\mathbf{m m}) \end{gathered}$	$\begin{gathered} \text { PT } \\ (\mathbf{m m}) \end{gathered}$	$\begin{gathered} \text { OT } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { MD } \\ (\mathbf{m m}, \text { max }) \end{gathered}$
N		$50 \quad(\pm 10)$ 20	11 ± 0.5	0.5 max	0.8 ± 0.5	0.1
A		$10 \quad(\pm 5)$ 3	11 ± 2	1.2 ± 0.5	2.5 ± 0.5	0.4
B		$12 \quad(\pm 5)$ 5	13 ± 1	0.8 ± 0.5	2.5 ± 0.5	0.3

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lever Type \& Dimensions \& Standard Operating Force Releasing Force (gf) \& $$
\underset{(\mathbf{m m})}{\mathbf{O P}}
$$ \& $$
\begin{gathered}
\text { PT } \\
(\mathbf{m m})
\end{gathered}
$$ \& $$
\begin{gathered}
\text { OT } \\
(\mathbf{m m})
\end{gathered}
$$ \& $$
\begin{gathered}
\text { MD } \\
(\mathbf{m m}, \max)
\end{gathered}
$$

\hline H \& \& $8 \quad(\pm 5)$

3 \& 13 ± 0.5 \& 1.7 ± 0.5 \& 3.1 ± 0.5 \& 0.4

\hline J \& \& $$
10 \quad(\pm 5)
$$ \& 12.5 ± 0.5 \& 1.2 ± 0.5 \& 3.0 ± 0.5 \& 0.4

\hline L \& \& | $15 \quad(\pm 5)$ |
| :--- |
| 8 | \& 13 ± 0.5 \& 0.8 ± 0.5 \& 2.6 ± 0.5 \& 0.4

\hline M \& \& | $25 \quad(\pm 10)$ |
| :--- |
| 8 | \& 12 ± 0.5 \& 0.65 ± 0.5 \& 1.5 ± 0.5 \& 0.2

\hline P \& \& | $10 \quad(\pm 5)$ |
| :--- |
| 3 | \& 17 ± 2 \& 0.6 ± 0.3 \& 2.2 ± 0.5 \& 0.3

\hline S \& \& | $15(\pm 5)$ |
| :--- |
| 8 | \& 16.5 ± 0.5 \& 0.5 ± 0.3 \& 2.8 ± 0.5 \& 0.3

\hline
\end{tabular}

Other Available Lever Types

Note 1:
Movement Differential Travel(MD) Distance is the distance of the actuator from the operating position to the releasing position. The shorter the DT distance, the quicker the moving contact returns back to NC contact from the NO contact. This feature is especially useful when the NO contact is connected to an inductive load or motor load such as a coil, during the OFF->ON->OFF switching cycle, a very strong back EMF is generated which can be as high as hundred volts. In this case, the shorter the switching cycle (thus shorter DT distance), the less damage of the EMF to the contacts which leads to longer operating life cycles of the devices.

Characteristics

- Wide switching capacity from $0.1 \mathrm{~A} \sim 16 \mathrm{~A} / 250 \mathrm{VAC}$
- Optional gold contacts for low energy applications
- Wide operating temperature range: $-25 \sim+125 \mathrm{C}$
- Custom made levers \& different operating force
- Compliant to major safety standards (UL/VDE)
- High tracking resistance (PTI 250V)

Electrical Data			
Electrical Ratings	0.1A/30VDC	25 T 85	1,000,000 cycles
Operating life cycles	$5 \mathrm{~A} / 40 \mathrm{VDC}$	25 T 85	6,000 cycles
	$0.1 \mathrm{~A} / 250 \mathrm{VAC}$	25 T 85	50,000 cycles
	3A 125/250VAC	25 T 85	50,000 cycles
	6A 125/250VAC	25 T 85	50,000 cycles
	10A 125/250VAC	25 T 85	50,000 / 100,000 cycles
	16A 125/250VAC	25 T 85	50,000 cycles
	$0.1 \mathrm{~A} / 30 \mathrm{VDC}$	$25 \mathrm{~T} 125$	1,000,000 cycles
	$0.1 \mathrm{~A} / 250 \mathrm{VAC}$	25 T 125	50,000 cycles
	3A 125/250VAC	25 T 125	50,000 cycles
	6A 125/250VAC	25 T 125	50,000 cycles
	10A 125/250VAC	25 T 125	50,000 cycles
	16A 125/250VAC	25 T 125	50,000 cycles
Dielectric strength	$1,000 \mathrm{VAC}, 50 \sim 60 \mathrm{~Hz}$, for 1 min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.		
Contact resistance	$30 \mathrm{~m} \Omega$ (max, silver contacts)		
Insulation resistance	$100 \mathrm{M} \Omega$ (min)		
Mechanical Data			
Operating force (pin plunger/no lever type)	$\begin{aligned} & 20 \pm 5 \mathrm{gf} \\ & 160 \pm 20 \mathrm{gf} \\ & 200 \pm 20 \mathrm{gf} \end{aligned}$		
Further Data			
Operating temperature	$\begin{aligned} & -25 \sim+85 \mathrm{C} \\ & -25 \sim+125 \mathrm{C} \end{aligned}$		
Circuit configuration	SPDT SPST-NO SPST-NC		
Terminals	Quick Connect Terminal Solder Terminal Screw Terminal PCB Right Angle Terminal		
Housing material	Thermoplastic		
Flammability Rating	UL94V-0		
Proof Tracking Index (PTI/CTI)	$\begin{aligned} & 175 \mathrm{~V} \\ & 250 \mathrm{~V} \end{aligned}$		

Remarks:

1. $\mathrm{OP}=$ Operating position (mm)
2. $\mathrm{PT}=$ Pre-travel distance (mm, \max)
3. OT= Over-travel distance ($\mathrm{mm}, \mathrm{min}$)
4. MD=Movement differential distance (mm, max)
5. The "xxxx" suffix code (in part-number) is assigned by Toneluck for individual customer specification.
6. Please consult Toneluck or her representatives for other custom-made specifications.

MQS-2 Ordering Information

Ordering Code

```
\(M Q S-2 \frac{10}{1} \frac{S}{2} \frac{A}{3} \frac{1}{4} \frac{A}{5} \frac{A}{6}-x x x x\)
```

1.Ratings

P1 $=0.1 \mathrm{~A} / 250 \mathrm{VAC}, 0.1 \mathrm{~A} / 30 \mathrm{VDC}$
$03=3 \mathrm{~A} / 250 \mathrm{VAC}$ $06=6 \mathrm{~A} / 250 \mathrm{VAC}$ $10=10 \mathrm{~A} / 250 \mathrm{VAC}$ $15=15.1 \mathrm{~A} / 250 \mathrm{VAC}$ $16=16 \mathrm{~A} / 250 \mathrm{VAC}$ $21=21 \mathrm{~A} / 250 \mathrm{VAC}$
2.0perating Temperature: $\mathrm{S}=-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} ; \mathrm{T}=-25^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
3. Lever Position: A or B, Nil=no lever installed
4.Lever Type: $1,2,3 \ldots n, 0=$ No lever installed
5.Terminal type
6. Circuit: $A=S P D T, B=S P S T-N C, C=S P S T-N O$

Basic Dimension

Lever Positions

Mounting holes

Lever Type: 1,2,3,4......

1. For lever installed in position B: MQS-210SB1xxxx; MQS-210SB2xxxx; MQS-210SB3xxxx......

Terminal Type

Circuit Configuration

Parameter

THK Telephone-hook switch

Characteristics

- Applicable in micro-current and high-load versions.
- Changeover timing available in wide variety
- Various type of levers available
- Long electronic life cycles
- High temperature Nylon material available
- Smooth light hand feel

Electrical Data	
Electrical Ratings	$0.2 \mathrm{~A} / 48 \mathrm{~V}$ DC
Operating life	300,000 cycles min.
Dielectric strength	$500 \mathrm{VDC}, 50 \sim 60 \mathrm{~Hz}$, for 1min between current-carrying metal part and ground, and between each terminal and non-current carrying metal part.
Contact resistance	$50 \mathrm{~m} \Omega(\mathrm{max})$
Insulation resistance	$100 \mathrm{M} \Omega(\mathrm{min})$
Mechanical Data	$50+/-10 \mathrm{gf}$
Operating force	THK-1 -10 $\sim+80 \mathrm{C}$ THK-2 -10 $\sim+60 \mathrm{C}$
Further Data	$1 \mathrm{P} 2 \mathrm{~T} \quad 2 \mathrm{P} 2 \mathrm{~T}$
Operating temperature	PC pins
Contact arrangement	Momentary
Terminals	UL94V-0, UL94V-2, UL94HB
Function	5 second at 225
Plastic material	
Max. soldering temperature	

Dimensional drawings

THK-1AN

THK-1CN

THK-2B

THK -2C

Ordering Instruction

THK-1 $\underset{\mathbf{A}}{\mathbf{N}} \mathbf{-}^{-\mathbf{x x x x}}$

123
1: Lever Type: A, B, C, D
2: $\mathrm{N}=$ Non-shorting $\quad \mathrm{S}=$ Shorting type
3: Housing material
$\mathrm{F}=$ high temperature
$\mathrm{Nil}=$ standard material

THK-2 \underline{C} - xxxx

Lever shape: ref. to drawings

Notes:

1. Please contact Toneluck or her representatives for details on switch modules
2. The "*****" is a 4 digits specification code assigned by Toneluck for individual customer specification

Characteristics

- Single pole, momentary
- Short stroke of 0.8 mm
- Light touch feeling
- Long electronic life cycles
- With standard plunger size $3.3 \times 3.3 \mathrm{~mm}$
- Various plunger height available
- Several colors and shapes available

Ordering Instruction

$\mathbf{K E Y}-\frac{\mathbf{R} \mathbf{2}}{1}-\frac{\mathbf{R}}{2}-\frac{\mathbf{X x X x}}{3}$
1: Cap shape
R: Round top with height 12.8 mm
Rs: Round curved top with height 13.9 mm
R2: Round curved top with height 13.7 mm
R3: Round curved top with height 14.6 mm
S: Square
P: $3.3(\mathrm{~W}) \times 3.3(\mathrm{~d}) \times 5.5(\mathrm{~h})$ plunger cap
K: Square cap (button) for KEY-S and KEY L
2. Cap color

R: Red
Y: Yellow
G: Green
B: Black
W: White
L: Blue
DGY: Dark Grey
LGY: Light Grey
3 : It is a four digit specification code assigned by Toneluck for different specification.

SPN Selector push switches

Characteristics

1.5 mm or 2.5 mm -travel distance

Long electronic life cycles
Various case and mounting available
PCB terminals and lead wiring terminals available

Application

suitable for audio systems, telephones, instruments,etc.

Technical specifications

Electrical Data	
Electrical Ratings	0.20A/30VDC
Operating life	General : 20,000 cycles (min) Case type L, Z \& T: 100,000 cycles (min)
Dielectric strength	$500 \mathrm{VAC}(50 \sim 60 \mathrm{~Hz}$, cut-off current 2 mA) is applied between non-connected terminals and between terminals and frame for $60+/-5 \mathrm{~s}$. No dielectric breakdown shall occur.
Contact resistance	$20 \mathrm{~m} \Omega$ (max)
Insulation resistance	$100 \mathrm{M} \Omega$ (min)
Change over time	Non-shorting
Mechanical Data	
Travel to lock distance	$\begin{aligned} & \text { SPN-32: } 2.5 \mathrm{~mm} \\ & \text { SPN-25: } 1.5-2.5 \mathrm{~mm} \end{aligned}$
Total travel distance	$\begin{aligned} & \text { SPN-32: } 3.5 \mathrm{~mm} \\ & \text { SPN-25: } 2.5-3.5 \mathrm{~mm} \end{aligned}$
Operating force	$\begin{aligned} & \text { SPN-32: } 300+/-100 \mathrm{~g} \\ & \text { SPN-32 (Case type L, T \& Z): } 80+/-20 \mathrm{~g} \\ & \text { SPN-25: } 330+/-100 \mathrm{~g} \\ & \text { SPN-25S-TT: } 200+/-100 \mathrm{~g} \\ & \text { SPN-25N-TT: } 200+/-100 \mathrm{~g} \end{aligned}$
Further Data	
Operating temperature	$-10 \sim+60 \mathrm{C}$
Circuit configuration	2 poles
Terminals	PCB terminals Lead wiring terminals
Function	Momentary Self-lock
Button	SPN-32: button BC, BF series SPN-25: button BC, BF \& MF Series
Plastic material	UL94HB
Solder heat resistance	260C/ 5 seconds max

Dimensional drawings: (SPN-25S-TT / SPN-25N-TT)

Toneluck

Case \& mounting

		 Type D
Type E		
Type L	Type M	Type N

Terminal Type

SPN-25		SPN-32		
Type:G	Type:H	Type:G	Type:H	Type: J

SPN series combination

Toneluck

Ordering Instruction

$\mathbf{S P N}-\underline{\mathbf{3 2}} \underline{\mathbf{S}}-\underline{\mathbf{L}} \mathbf{J} \mathbf{- x x x x}$
 12345

1: Terminal pitch
$32=3.2 \mathrm{~mm}$
$25=2.5 \mathrm{~mm}$
2: Function
S = Self lock
$\mathrm{N}=$ Non-lock
3: Case \& mounting
Ref. to the above case and mounting.
4: Terminal type
Ref. to terminal type.
5: It is a four digital specification code assigned by Toneluck for different specification.

