

Logic Diagram

Truth Tables

Synchronous Operation

Inputs					Outputs
D_{n}	CP ${ }_{\text {n }}$	CP_{c}	$\begin{gathered} \mathrm{MS} \\ S D_{n} \end{gathered}$	$\begin{aligned} & M R \\ & C D_{n} \end{aligned}$	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t}+1)$
L	\sim	L	L	L	L
H	\sim	L	L	L	H
L	L	\sim	L	L	L
H	L	-	L	L	H
X	L	L	L	L	Qn(t)
X	H	X	L	L	Qn(t)
X	X	H	L	L	Qn(t)

H $=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$U=$ Undefined
$t=$ Time before CP Positive Transition
$t+1$ = Time after CP Positive Transition
$\tau=$ LOW to HIGH Transition

Absolute Maximum Ratings (Note 1)	Input Voltage (DC)	V_{EE} to +0.5 V
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/	Output Current (DC Output HIGH)	-50 mA
Distributors for availability and specifications.	ESD (Note 2)	$\leq 2000 \mathrm{~V}$
Above which the useful life may be impaired	Recommended Operating	
Storage Temperature ($\mathrm{T}_{\text {STG }}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Maximum Junction Temperature (T_{J})	Conditions	
Ceramic $+175{ }^{\circ} \mathrm{C}$	Case Temperature (T_{C})	
Pin Potential to	Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ground Pin $\left(\mathrm{V}_{\text {EE }}\right) \quad-7.0 \mathrm{~V}$ to +0.5 V	Supply Voltage (V_{EE})	-5.7 V to -4.2V
	Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
	Note 2: ESD testing conform	d 3015.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min Max			$\mathbf{T}_{\mathbf{C}}$$0^{\circ} \mathrm{C}$ to$+125^{\circ} \mathrm{C}$	Conditions		
V_{OH}	Output HIGH Voltage	-1025	-870	mV		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ (\mathrm{Max}) \\ \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{gathered}$	Loading with 50Ω to -2.0 V	$\begin{gathered} (\text { Notes } 3, \\ 4,5) \end{gathered}$
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ (\text { Min }) \end{gathered}$	Loading with 50Ω to -2.0 V	$\begin{gathered} (\text { Notes } 3, \\ 4,5) \end{gathered}$
		-1085		mV	$-55^{\circ} \mathrm{C}$	or $\mathrm{V}_{\text {IL }}$ (Max)		
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIG for all Inputs	Signal	(Notes 3, $4,5,6)$
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LO for all Inputs	Signal	(Notes 3, $4,5,6)$
I_{L}	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$		$\begin{gathered} (\text { Notes } 3, \\ 4,5) \end{gathered}$
I_{H}	Input HIGH Current		240	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		$\begin{gathered} (\text { Notes } 3, \\ 4,5) \end{gathered}$
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$			
I_{EE}	Power Supply Current	-130	-50	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		(Notes 3, 4, 5)

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 4: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups, $1,2,3,7$ and 8 .
Note 5: Sampled tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 and 8 .
Note 6: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$

AC Electrical Characteristics

$\frac{\mathrm{V}_{\mathrm{EE}}}{\text { Symbol }}$	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions		Notes
		Min	Max	Min	Max	Min	Max				
$\mathrm{f}_{\text {max }}$	Toggle Frequency	400		400		400		MHz	Figures 2, 3		$\begin{gathered} \hline \text { (Note } \\ 10) \\ \hline \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP_{C} to Output	0.50	2.20	0.60	2.00	0.50	2.40	ns	Figures 1, 3		(Notes 7, 8, 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP_{n} to Output	0.50	2.20	0.60	2.00	0.50	2.40	ns			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C D_{n}, S D_{n}$ to Output	0.50	2.20	0.60	2.00	0.50	2.40	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$	Figures 1, 4	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$		0.50	2.40	0.60	2.10	0.50	2.50		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MS, MR to Output	0.70	2.70	0.80	2.60	0.80	2.90	ns	$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$		0.70	2.90	0.80	2.80	0.80	3.10		$\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{H}$		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.40	0.20	1.40	0.20	1.40	ns	Figures 1, 3, 4		
$\mathrm{t}_{\text {s }}$	```Setup Time D CD MS, MR (Release Time)```	$\begin{aligned} & 1.00 \\ & 1.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.30 \\ & 2.30 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.60 \\ & 2.50 \\ & \hline \end{aligned}$		ns	Figure 5 Figure 4		(Note 10)
$t_{\text {h }}$	Hold Time D_{n}	1.50		1.30		1.60		ns	Figure 5		
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH $\begin{aligned} & C P_{n}, C P_{C}, C D_{n}, \\ & S D_{n}, M R, M S \end{aligned}$	2.00		2.00		2.00		ns	Figures 3, 4		

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 8: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$. Temperature only, Subgroup A9
Note 9: Sample tested (Method 5005, Table I) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups A10 and A11.
Note 10: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuits

FIGURE 1. AC Test Circuit

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ Equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 2. Toggle Frequency Test Circuit

Switching Waveforms

FIGURE 3. Propagation Delay (Clock) and Transition Times

FIGURE 4. Propagation Delay (Resets)

FIGURE 5. Data Setup and Hold Time
Note 11: t_{s} is the minimum time before the transition of the clock that information must be present at the data input. Note 12: t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D) NS Package Number J24E

W24B (REV D
24-Lead Quad Cerpak (F) NS Package Number W24B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

