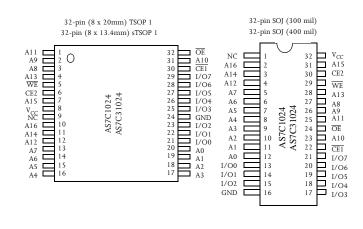


5V/3.3V 128K×8 CMOS SRAM (Evolutionary Pinout)

Features


- AS7C1024 (5V version)
- AS7C31024 (3.3V version)
- Industrial and commercial temperatures
- Organization: 131,072 words × 8 bits
- High speed
 - 12/15/20 ns address access time
- 6, 7,8 ns output enable access time
- Low power consumption: ACTIVE
 - 825 mW (c) / max @ 12 ns
 - 360 mW (AS7C31024) / max @ 12 ns
- Low power consumption: STANDBY
- 55 mW (AS7C1024) / max CMOS
- 36 mW (AS7C31024) / max CMOS

- Easy memory expansion with $\overline{\text{CE1}}$, CE2, $\overline{\text{OE}}$ inputs
- TTL/LVTTL-compatible, three-state I/O
- 32-pin JEDEC standard packages
 - 300 mil SOJ
 - 400 mil SOJ
 - 8 × 20mm TSOP 1
- ESD protection ≥ 2000 volts
- Latch-up current ≥ 200 mA

Logic block diagram

Pin arrangement

Selection guide

	AS7C1024-12	AS7C1024-15	AS7C1024-20	
	AS7C31024-12	AS7C31024-15	AS7C31024-20	Unit
	12	15	20	ns
	6	7	8	ns
AS7C1024	140	125	110	mA
AS7C31024	90	80	75	mA
AS7C1024	10	10	15	mA
AS7C31024	10	10	15	mA
	AS7C31024 AS7C1024	AS7C31024-12 12 6 AS7C1024 140 AS7C31024 90 AS7C1024 10	AS7C31024-12 AS7C31024-15 12 15 6 7 AS7C1024 140 125 AS7C31024 90 80 AS7C1024 10 10	AS7C31024-12 AS7C31024-15 AS7C31024-20 12 15 20 6 7 8 AS7C1024 140 125 110 AS7C31024 90 80 75 AS7C1024 10 10 15

Functional description

The AS7C1024 and AS7C31024 are high performance CMOS 1,048,576-bit Static Random Access Memory (SRAM) devices organized as 131,072 words \times 8 bits. It is designed for memory applications where fast data access, low power, and simple interfacing are desired.

Equal address access and cycle times (t_{AA} , t_{RC} , t_{WC}) of 12/15/20 ns with output enable access times (t_{OE}) of 6, 7,8 ns are ideal for high performance applications. Active high and low chip enables ($\overline{CE1}$, CE2) permit easy memory expansion with multiple-bank systems.

When $\overline{\text{CE1}}$ is high or CE2 is low the devices enter standby mode. If inputs are still toggling, the device will consume I_{SB} power. If the bus is static, then full standby power is reached (I_{SB1} or I_{SB2}). For example, the AS7C31024 is guaranteed not to exceed 0.33mW under nominal full standby conditions. All devices in this family will retain data when VCC is reduced as low as 2.0V.

A write cycle is accomplished by asserting write enable ($\overline{\text{WE}}$) and both chip enables ($\overline{\text{CE1}}$, CE2). Data on the input pins I/O0-I/O7 is written on the rising edge of $\overline{\text{WE}}$ (write cycle 1) or the active-to-inactive edge of $\overline{\text{CE1}}$ or CE2 (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable ($\overline{\text{OE}}$) or write enable ($\overline{\text{WE}}$).

A read cycle is accomplished by asserting output enable (\overline{OE}) and both chip enables $(\overline{CE1}, CE2)$, with write enable (\overline{WE}) high. The chips drive I/O pins with the data word referenced by the input address. When either chip enable is inactive, output enable is inactive, or write enable is active, output drivers stay in high-impedance mode.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit	
Voltage on V_{CC} relative to GND	AS7C1024	V_{t1}	-0.50	+7.0	V
voltage on ACC relative to GMD	AS7C31024	V _{t1}	-0.50	+5.0	V
Voltage on any pin relative to GND		V_{t2}	-0.50	V _{CC} +0.50	V
Power dissipation		P_{D}	_	1.0	W
Storage temperature (plastic)		T _{stg}	-65	+150	°C
Ambient temperature with V _{CC} applied		T _{bias}	-55	+125	°C
DC current into outputs (low)		I _{OUT}	=	20	mA

Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

CE1	CE2	WE	ŌĒ	Data	Mode
Н	X	X	X	High Z	Standby (I _{SB} , I _{SB1})
X	L	X	X	High Z	Standby (I _{SB} , I _{SB1})
L	Н	Н	Н	High Z	Output disable (I _{CC})
L	Н	Н	L	D _{OUT}	Read (I _{CC})
L	Н	L	X	D _{IN}	Write (_{ICC})

Key: X = Don't Care, L = Low, H = High

Recommended operating conditions

Parameter	Device	Symbol	Min	Nominal	Max	Unit
Supply voltage	AS7C1024	V_{CC}	4.5	5.0	5.5	V
supply voltage	AS7C31024	V_{CC}	3.0	3.3	3.6	V
	AS7C1024	V_{IH}	2.2	_	$V_{CC} + 0.5$	V
Input voltage	AS7C31024	V_{IH}	2.0	_	$V_{CC} + 0.5$	V
		V_{IL}^{\dagger}	-0.5	_	0.8	V
Ambient operating temperature	commercial	T _A	0	-	70	°C
Thinblent operating temperature	industrial	T_A	-40	_	85	°C

 $^{^{\}dagger}$ V_{IL}min = -3.0V for pulse width less than t_{RC/2}.

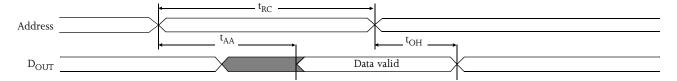
DC operating characteristics (over the operating range)¹

				- 1	12	- 1	. 5	-2	20	T T : 4
Parameter	Sym	Test conditions	Device	Min	Max	Min	Max	Min	Max	Unit
Input leakage current	$ I_{\rm LI} $	$V_{CC} = Max$, $V_{IN} = GND$ to V_{CC}		_	1	_	1	_	1	μΑ
Output leakage current	$ I_{LO} $	$V_{CC} = Max$, $\overline{CE1} = V_{IH}$ or $CE2 = V_{IL}$, $V_{OUT} = GND$ to V_{CC}		-	1	-	1	_	1	μΑ
Operating		$V_{CC} = Max, \overline{CE1} = V_{IL},$	AS7C1024	-	140	_	125	_	110	
power supply current	I _{CC}	$CE2 = V_{IH}, f = f_{Max}, I_{OUT} = 0$ mA	AS7C31024	-	90	-	80	-	75	mA
		$V_{CC} = Max, \overline{CE1} \ge V_{IH} \text{ and/or}$	AS7C1024	-	75	_	65	_	60	
Standby power	I_{SB}	CE2 \leq V _{IL} , V _{IN} = V _{IH} or V _{IL} , $f = f_{Max}, I_{OUT} = 0 \text{mA}$	AS7C31024	ı	50	_	40	1	35	mA
supply current		$V_{CC} = Max, \overline{CE1} \ge V_{CC} - 0.2V$	AS7C1024	-	10	_	10	_	15	
	I_{SB1}	$V_{IN} \le GND + 0.2V \text{ or}$ $V_{IN} \ge V_{CC} - 0.2V, f = 0$	AS7C31024		10	_	10	ı	15	mA
Output voltage	V_{OL}	$I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}$		ı	0.4	_	0.4	ı	0.4	V
Output voltage	V _{OH}	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}$		2.4	_	2.4	_	2.4	_	V

Shaded areas contain advance information.

Capacitance (f = 1 MHz, $T_a = 25$ °C, $V_{CC} = NOMINAL$)²

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C_{IN}	A, $\overline{\text{CE1}}$, CE2, $\overline{\text{WE}}$, $\overline{\text{OE}}$	$V_{IN} = 0V$	5	pF
I/O capacitance	C _{I/O}	I/O	$V_{IN} = V_{OUT} = 0V$	7	pF


Read cycle (over the operating range)^{3,9,12}

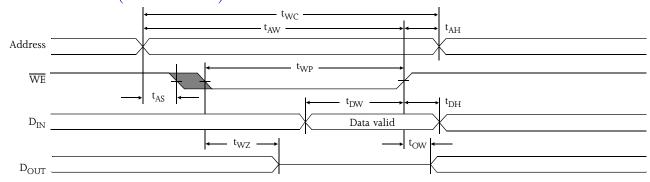
		-1	12	-1	5	-2	20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	12	-	15	-	20	-	ns	
Address access time	t _{AA}	_	12	-	15	-	20	ns	3
Chip enable (CE1) access time	t _{ACE1}	_	12	-	15	-	20	ns	3, 12
Chip enable (CE2) access time	t _{ACE2}	_	12	-	15	-	20	ns	3, 12
Output enable (\overline{OE}) access time	t _{OE}	_	6	-	7	-	8	ns	
Output hold from address change	t _{OH}	3	-	3	-	3	-	ns	5
CE1 Low to output in low Z	t _{CLZ1}	3	_	3	_	3	-	ns	4, 5, 12
CE2 High to output in low Z	t _{CLZ2}	3	-	3	-	3	_	ns	4, 5, 12
CE1 Low to output in high Z	t _{CHZ1}	_	3	-	4	-	5	ns	4, 5, 12
CE2 Low to output in high Z	t _{CHZ2}	_	3	-	4	-	5	ns	4, 5, 12
OE Low to output in low Z	t _{OLZ}	0	-	0	-	0	_	ns	4, 5
OE High to output in high Z	t _{OHZ}	_	3	_	4	_	5	ns	4, 5
Power up time	t _{PU}	0	-	0	-	0	_	ns	4, 5, 12
Power down time	t _{PD}	_	12	_	15	_	20	ns	4, 5, 12

Key to switching waveforms

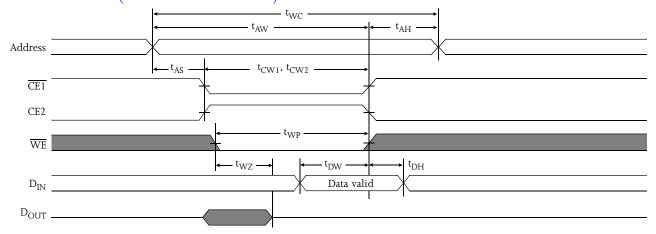
Rising input Undefined / don't care Falling input

Read waveform 1 (address controlled)^{3,6,7,9,12}

Read waveform 2 ($\overline{\text{CE1}}$, CE2, and $\overline{\text{OE}}$ controlled)^{3,6,8,9,12}



Write cycle (over the operating range)^{11, 12}

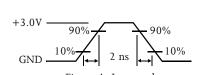

, , ,	0 /	-	12	=	15	-2	20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{WC}	12	_	15	_	20	_	ns	
Chip enable (CE1) to write end	t _{CW1}	10	_	12	_	12	_	ns	12
Chip enable (CE2) to write end	t _{CW2}	10	_	12	_	12	_	ns	12
Address setup to write end	t _{AW}	10	_	12	_	12	_	ns	
Address setup time	t _{AS}	0	_	0	_	0	_	ns	12
Write pulse width	t _{WP}	8	_	9	_	12	_	ns	
Address hold from end of write	t _{AH}	0	_	0	_	0	_	ns	
Data valid to write end	t _{DW}	6	_	9	_	10	_	ns	
Data hold time	t _{DH}	0	_	0	_	0	_	ns	4, 5
Write enable to output in high Z	t _{WZ}	_	5	_	5	_	5	ns	4, 5
Output active from write end	t _{OW}	3	ı	3	ı	3	j	ns	4, 5

Shaded areas contain advance information.

Write waveform 1 ($\overline{\text{WE}}$ controlled) I0,I1,I2

Write waveform 2 ($\overline{\text{CE1}}$ and CE2 controlled) 10,11,12

3


AC test conditions

- 5V output load: see Figure B or Figure C.

- Input pulse level: GND to 3.0V. See Figure A.

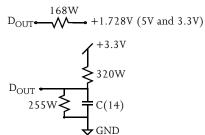
- Input rise and fall times: 2 ns. See Figure A.

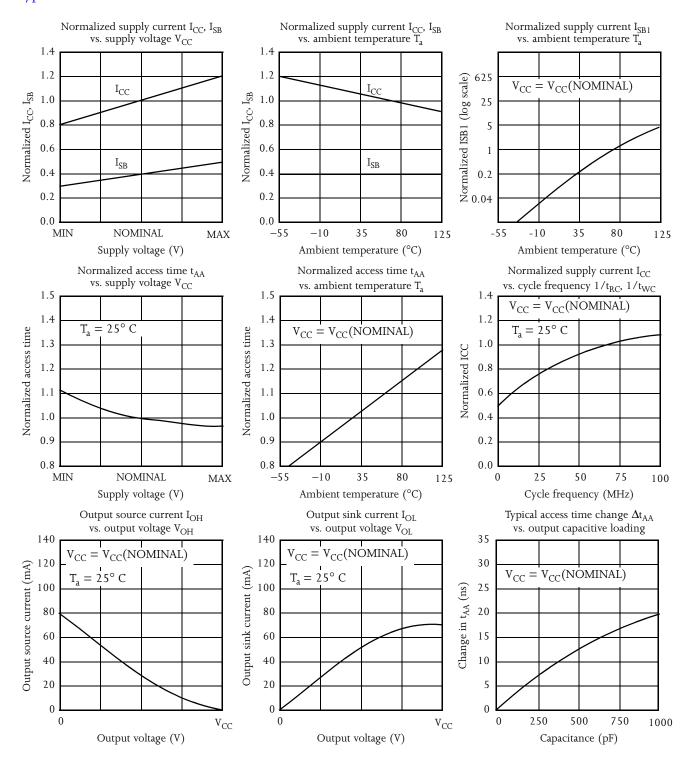
- Input and output timing reference levels: 1.5V.

255W C(14)

Figure B: 5V Output load

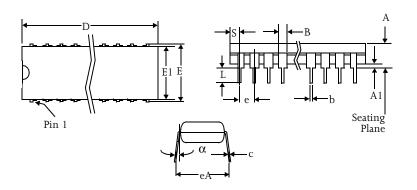
Thevenin equivalent:



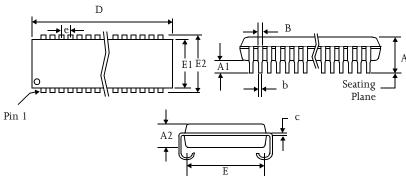

Figure C: 3.3V Output load

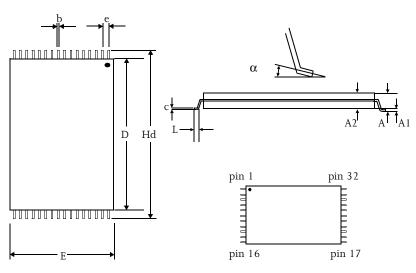
Notes

- 1 During V_{CC} power-up, a pull-up resistor to V_{CC} on $\overline{CE1}$ is required to meet I_{SB} specification.
- 2 This parameter is sampled and not 100% tested.
- 3 For test conditions, see AC Test Conditions, Figures A, B, and C.
- 4 t_{CLZ} and t_{CHZ} are specified with CL = 5pF, as in Figure C. Transition is measured $\pm 500 mV$ from steady-state voltage.
- 5 This parameter is guaranteed, but not 100% tested.
- 6 WE is High for read cycle.
- 7 $\overline{\text{CE1}}$ and $\overline{\text{OE}}$ are Low and CE2 is High for read cycle.
- 8 Address valid prior to or coincident with $\overline{\text{CE1}}$ transition Low.
- 9 All read cycle timings are referenced from the last valid address to the first transitioning address.
- 10 $\overline{\text{CE1}}$ or $\overline{\text{WE}}$ must be High or CE2 Low during address transitions. Either $\overline{\text{CE1}}$ or $\overline{\text{WE}}$ asserting high terminates a write cycle.
- 11 All write cycle timings are referenced from the last valid address to the first transitioning address.
- $\overline{12}$ $\overline{CE1}$ and CE2 have identical timing.
- 13 C=30pF, except all high Z and low Z parameters, C=5pF.



Typical DC and AC characteristics




Package dimensions

	32-pin PDIP				
	Min in mils	Max in mils			
A	-	0.180			
A1	0.015	-			
В	0.045	0.055			
b	0.015	0.021			
С	0.008	0.012			
D	-	1.571			
E	0.300	0.325			
E1	0.280	0.295			
e	0.100	O BSC			
eA	0.330	0.370			
L	0.110	0.142			
a	0°	15°			
S	-	0.043			

	32-pin SC	J 300 mil	32-pin SC	J 400 mil
	Min	Max	Min	Max
Α	-	0.145	-	0.145
A1	0.025	1	0.025	1
A2	0.086	0.105	0.086	0.115
В	0.026	0.032	0.026	0.032
b	0.014	0.020	0.015	0.020
С	0.006	0.013	0.007	0.013
D	0.820	0.830	0.820	0.830
E	0.250	0.275	0.360	0.380
E1	0.292	0.305	0.395	0.405
E2	0.330	0.340	0.435	0.445
e	0.050) BSC	0.050) BSC

	32-pin TSO	P 8×20 mm
	Min in mm	Max in mm
A	_	1.20
A1	0.05	0.15
A2	0.95	1.05
b	0.17	0.27
С	0.10	0.21
D	18.20	18.60
e	0.50 n	ominal
Е	7.80	8.20
Hd	19.80	20.20
L	0.50	0.70
α	0°	5°

Ordering codes

014011118 00400				
Package \ Access time	Volt/Temp	12 ns	15 ns	20 ns
	5V commercial	AS7C1024-12TJC	AS7C1024-15TJC	AS7C1024-20TJC
Plastic SOJ, 300 mil	5V industrial	AS7C1024-12TJI	AS7C1024-15TJI	AS7C1024-20TJI
Flastic SOJ, 300 IIIII	3.3V commercial	AS7C31024-12TJC	AS7C31024-15TJC	AS7C31024-20TJC
	3.3V industrial	AS7C31024-12TJI	AS7C31024-15TJI	AS7C31024-20TJI
	5V commercial	AS7C1024-12JC	AS7C1024-15JC	AS7C1024-20JC
Plastic SOJ, 400 mil	5V industrial	AS7C1024-12JI	AS7C1024-15JI	AS7C1024-20JI
Flastic SOJ, 400 IIIII	3.3V commercial	AS7C31024-12JC	AS7C31024-15JC	AS7C31024-20JC
	3.3V industrial	AS7C31024-12JI	AS7C31024-15JI	AS7C31024-20JI
	5V commercial	AS7C1024-12TC	AS7C1024-15TC	AS7C1024-20TC
TSOP 8 × 20 mm	5V industrial	AS7C1024-12TI	AS7C1024-15TI	AS7C1024-20TI
1501 6 × 20 mm	3.3V commercial	AS7C31024-12TC	AS7C31024-15TC	AS7C31024-20TC
	3.3V industrial	AS7C31024-12TI	AS7C31024-15TI	AS7C31024-20TI

Part numbering system

AS7C	X	1024	–XX	X	X
SRAM prefix	Blank=5V CMOS 3=3.3V CMOS	Device number	Access time	Package: TP=PDIP 300 mil T=TSOP1 8×20 mm J=SOJ 400 mil TJ=SOJ 300 mil	Temperature range C = Commercial, 0°C to 70°C I = Industrial, -40°C to 85°C

5/25/01; v.1.2

Alliance Semiconductor

P. 9 of 9