LED level meter driver, 12-point $\times 2$ channel, VU scale, bar display BA6820F / BA6822S / BA6822F

The BA6820F, BA6822S and BA6822F are two-channel, 12-point LED drivers for VU-scale bar-level meters.
The ICs are available in 22-pin SOP (BA6820F and BA6822F) and 22-pin shrink-DIP (BA6822S) packages, and use a dynamic-drive system that can drive two 12-point displays. The ICs have independent AC and DC inputs, and the AC input mode has a peak hold circuit (with cancel function). The ICs also feature a power-on mute, so steps to prevent erroneous LED lighting at power on are not required.
The input resistance of the AC inputs is $3 k \Omega$ (Typ.) for the BA6820F and $0.3 \mathrm{k} \Omega$ (Typ.) for the BA6822S/F.

-Applications

Level meters for VCRs, stereo cassette players, audio amplifiers and karaoke equipment.

-Features

1) Uses dynamic-drive system to display two 12-point channels. 22 -pin SOP and 22 -pin shrink DIP packages.
2) Independent AC and DC inputs provided (one input displays one channel). Switching function allows two-mode display.
3) Upper 8 points have peak hold function in AC mode (two seconds). A peak-hold cancel function is also provided.
4) A mute function is provided, and muting can be applied externally.
5) Power on mute function.

Absolute maximum ratings
(BA6820F/BA6822F) $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	VCC	7.0	V
Power dissipation	Pd	450^{*}	mW
Operating temperature	Topr	$-20 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Maximum output driver current	IOM	40	mA
Maximum display switch driver current	IDM	20	mA

* Reduced by 4.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
(BA6822S) $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	V_{cc}	7.0	V
Power dissipation	Pd	1000^{*}	mW
Operating temperature	Topr	$-20 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Maximum output driver current	IOM	60	mA
Maximum display switch driver current	IDM	30	mA

* Reduced by 10 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
-Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Oscillator frequency	fosc	-	4	-	kHz	$\mathrm{C}=0.01 \mu \mathrm{~F}$ $\mathrm{R}=41 \mathrm{k} \Omega$

－Electrical characteristics（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ and $\mathrm{f}=1 \mathrm{kHz}$ ）

Parameter		Symbol	Min．	Typ．	Max．	Unit	Conditions
Operating power supply voltage		Vcc	4.5	5.0	5.5	V	－
Quiescent current		lo	－	10	15	mA	Not input，when output off
＜1／2 divider amplifier 1）							
Quiescent input voltage		Voo	－	30	100	mV	$\mathrm{lin}^{\prime}=0, \mathrm{R}_{\mathrm{L}}=47 \mathrm{k} \Omega$
Input resistance	BA6820F	Rin	2	3	4	$k \Omega$	－
	BA6822S／F		0.2	0.3	0.4		
Output voltage	BA6820F	Vout	600	1000	1400	mV	$\begin{aligned} & \mathrm{liv}=-100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=47 \mathrm{k} \Omega \end{aligned}$
	BA6822S／F		500	890	1400		
Maximum input current		1 m	1.2	2	－	mA	－
Crosstalk		CT	－	40	120	mV	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{Vrms}$
Differential output voltage		\triangle Vout	－250	0	250	mV	$\mathrm{liN}^{\prime}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=47 \mathrm{k} \Omega$
Output voltage linearity	BA6820F	$\Delta \mathrm{V} / \Delta \mathrm{l}$	400	650	900	mV	$\mathrm{liv}=-10 \sim-100 \mu \mathrm{~A}$
	BA6822S／F		350	650	900		
〈DC input）							
DC input resistance		Rinde	30	50	70	$k \Omega$	－
＜Oscillator〉							
Oscillator frequency		fosc	3.5	4.0	4.5	kHz	$\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=41 \mathrm{k} \Omega$
＜Display output）							
Peak hold time＊1		Thold	－	2	－	s	fosc $=4 \mathrm{kHz}$
Display switch output duty cycle		duty	－	7／32	－	－	－
Display switch output low level voltage		Vol	－	0.1	0.3	V	$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$, pins 12 to 15
Display switch output leakage current		IDleak	－	－	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ ，pins12 1015
LED driver output low level voltage		Vol	－	0.3	0.7	V	$\mathrm{lo}_{0}=30 \mathrm{~mA}$ ，pins16 to 21
LED driver output leakage current		Ioleak	－	－	10	$\mu \mathrm{A}$	$\mathrm{VCE}=5 \mathrm{~V}$ ，pins16 to21
Mute time at power on		Tmute	－	1	－	s	$\mathrm{fosc}=4 \mathrm{kHz}$
AC／DC switching threshold level		VTH6	2.2	2.5	2.8	V	＂H＂；AC，＂L＂；DC6pin
Forced mute input threshold		$V_{\text {TH7 }}$	2.2	2.5	2.8	V	＂ $\mathrm{H}^{\prime \prime}$ ：mute（pin 7）
Peak hold cancel input threshold		$V_{\text {TH8 }}$	2.2	2.5	2.8	V	＂H＂：cancel（pin 8）
〈Comparator〉							
AC comparator level 12		VC12AC	8.5	10	12	dB	Output：pin 16＊3
AC comparator level 11		VC11ac	5.5	7	8.5	dB	Output：pin 16＊3
$A C$ comparator level 10		Vcloac	3.0	4	5.5	dB	Output：pin 17＊3
AC comparator level 9		Vc9ac	1.0	2	3.0	dB	Output：pin 17＊3
AC comparator level 8		Vc8ac	－	0	－	dB	Output：pin 18＊3
AC comparator level 7		Vctac	-3.0	－2	-1.0	dB	Output：pin 18＊3
AC comparator level 6		VC6ac	-5.5	－4	-3.0	dB	Output：pin 19＊3
AC comparator level 5		Vcsac	－8．5	－7	－5．5	dB	Output：pin 19＊3
AC comparator level 4		Vc4ac	－15	－10	－8．5	dB	Output：pin 20＊3
AC comparator level 3		Vc3ac	－25	-20	－15	dB	Output：pin 20＊3
AC comparator level 2		Vc2ac	－33	-30	－25	dB	Output：pin 21＊3
AC comparator level 1		VC1ac	－55	-38	－33	dB	Output：pin 21＊3

Parameter		Symbol	Min.	Typ.	Max.	Unit	Conditions
AC sensitivity	BA6820F	Vinac	170	308	450	$\mathrm{m} \mathrm{V}_{\text {ms }}$	AC comparator level 8 on level
	BA6822S/F		220	400	580		
DC comparator level 12		VC12de	2.78	3.10	3.44	V	Output: pin 16*4
DC comparator level 11		VC1100	2.35	2.64	2.90	V	Output: pin 16*4
DC comparator level 10		$V_{\text {c100 }}$	1.98	2.23	2.48	V	Output: pin 17*4
DC comparator level 9		Vcgoc	1.75	2.00	2.25	V	Output: pin 17*4
DC comparator level 8		V_{6800}	1.50	1.76	2.00	V	Output: pin 18*4
DC comparator level 7		Vctoc	1.35	1.58	1.85	V	Output: pin 18*4
DC comparator level 6		V 6 boc	1.20	1.42	1.65	V	Output: pin 19*4
DC comparator level 5		Vasoc	1.00	1.18	1.35	V	Output: pin 19*4
DC comparator level 4		VCade	0.80	1.00	1.15	V	Output: pin 20*4
DC comparator level 3		Vc300	0.35	0.51	0.70	V	Output: pin 20*4
DC comparator level 2		Verdi	0.15	0.25	0.35	V	Output: pin $21 * 4$
DC comparator level 1		Vaide	0.05	0.11	0.20	V	Output: pin 21*4

* 1 Peak hold for comparator levels for 5 to 12. There is no peak hold for DC input.
* 2 Display switch output duty cycle.

* 3 The reference value for the AC comparator is the level of comparator 8 .
* 4 Only ch2 is effective in DC input mode.
- Measurement circuit

Fig. 1
-Application example

Fig. 2
-Attached components

- C_{1} and $\mathrm{C}_{2}: 1 \mu \mathrm{~F}$ input coupling capacitors (electrolytic) for the square-root compression amplifier. The rectified voltage output from pins 2 and 4 is attenuated by 1.5 dB at the frequency determined by the following formula (refer to the data for the relationship between the pin 2 and 4 DC voltage frequency characteristics and the LED lighting level).

$$
\frac{7}{32}
$$

$$
\mathrm{fC}=\frac{1}{2 \pi \cdot \mathrm{C}_{1}\left(\mathrm{RiN}_{\mathrm{I}}+\mathrm{VR}_{1}\right)} \quad\left(\mathrm{RiN}_{1}=\text { input resistance }\right)
$$

When the LEDs light due to low-frequency mechanical noise or induced hum, reduce the values of C_{1} and C_{2} to cut the cut the low-frequency frequency characteristic.

- VR1 and VR2: $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
$\frac{V_{\text {cc }}-V_{\text {Led }}-V_{\text {sat }}\left(Q_{1}-Q_{4}\right)-V_{D L}}{I_{\text {Led }}}$
(3) Peak hold

The peak hold circuit momentarily holds the maximum signal level in AC input mode. The peak hold function applies to comparator levels 5 to 12 (8 points). When the oscillator frequency is 4 kHz , the peak hold time is two seconds (Typ.), and can be changed by changing the oscillator frequency. The peak hold function can be turned off by setting pin 8 high.
The peak hold function does not operate in DC input mode.
(4) Output block

The two sets of 12 LEDs for the BA6820F and BA6822S/F are divided into 4 groups of six. A dynamicdrive technique is used to drive the LEDs in order, and display the input level.

Group 1
Channel 1 LEDs 1, 3, 5, 7, 9 and 11
(odd-numbered LEDs)
Group 2
Channel 1 LEDs 2, 4, 6, 8, 10 and 12
(even-numbered LEDs)
Group 3
Channel 2 LEDs 1, 3, 5, 7, 9 and 11
(odd-numbered LEDs)
Group 4
Channel 2 LEDs 2, 4, 6, 8, 10 and 12
(even-numbered LEDs)
Therefore, six LED drive outputs, and four display switch terminals are provided.
The output timing chart for when all LEDs are lit is shown in Fig. 3.
In DC input mode, only channel 2 operates.
D_{1} to D_{4} in the timing chart operate in the same way as for AC mode (i.e. D_{1} and D_{2} operate), but O_{1} to O_{6} are high for the channel 1 period.

1) Display switch outputs (pins 12 to 15)

To successively switch between the four LED groups, these outputs are active low (see Fig. 4).
The outputs are pulled up by $36 \mathrm{k} \Omega$ resistors (between the base and emitter of Q_{1} to Q_{4}), so leak current bypass resistors are not required.

Fig. 3

Fig. 4

Fig. 7
(8) GND terminal (pins 10 and 11)

Pin 11 is the GND for the pin 12 to pin 21 driver circuits, and pin 10 is the GND for the other signal circuits (see Fig. 8).
Pins 10 and 11 are not connected internally, so both must be connected to GND.
The large LED current that flows from pin 11 has a large high-frequency component, so care must be taken with regard to the PCB layout to avoid faulty operation of the IC, and incorrect lighting of the LEDs due to noise.

Operation notes

(1) Use the potentiometers VR1 and VR2 connected to pins 1 and 3 to set the 0 dB levels and adjust the channel 1 and channel 2 balance.
(2) The recommended oscillator frequency is 4 kHz (pin 9). The external component values for C_{5} and R_{3} are $0.01 \mu \mathrm{~F}$ and $41 \mathrm{k} \Omega$ (or $39 \mathrm{k} \Omega$). If you wish to use other values, they should be in the ranges $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ and $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$. (see Fig. 9).
(3) The dynamic ranges for the BA6820F and BA6822S/F comparators are large, and the comparators will operate even with low-level signals.
For this reason, noise may cause the LEDs to light when they should not, and to prevent this, GND line noise should be kept sufficiently low.
(4) Take care to ensure the none of the pins have a voltage applied to them that is higher than Vcc or lower than GND (e.g. supply the LED current from a source other than $\mathrm{Vcc}_{\mathrm{c}}$).
(5) In general, the level meter output block is switched on and off in the range GND to $\mathrm{Vcc}_{\text {c }}$, and a large voltage with a large high-frequency component is generated.
Therefore, if the input and output lines are close, the out-

Fig. 8
put may be fed back to the input and cause oscillation, incorrect LED lighting, or faulty operation of the IC. Design the PCB artwork so that there is no coupling between the input and output lines or with other units, in the same way as for linear amplifier PCB design. If they must be physically close, insert a capacitor between the input and GND to reduce the AC input impedance, and prevent noise from entering the input.

Fig. 9

OElectrical characteristic curves

Fig. 10 Frequency characteristics

Fig. 13 Output saturation voltage vs.
sink current
(display switch output)

1, 3PIN INPUT VOLTAGE: VIN(mV)
Fig. 11 Pin 2 and pin 4 DC output voltage vs. pin 1 and pin 3 $A C$ input voltage

Fig. 12 Output saturation voltage vs. sink current (LED output)

External dimensions (Units: mm)

BA6820/BA6822F

SOP22

BA6822S

