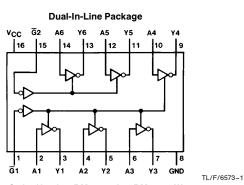


June 1989

DM54368 Hex TRI-STATE Inverting Buffers


DM54368 Hex TRI-STATE® Inverting Buffers

General Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the

output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Order Number DM54368J or DM54368W See NS Package Number J16A or W16A

Function Table

$\mathbf{Y} = \overline{\mathbf{A}}$						
Inputs		Output				
G	Α	Y				
L	L	Н				
L	н	L				
н	х	Hi-Z				

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

Hi-Z = TRI-STATE (Outputs are disabled)

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1995 National Semiconductor Corporation TL/F/6573

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature	
Range	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C

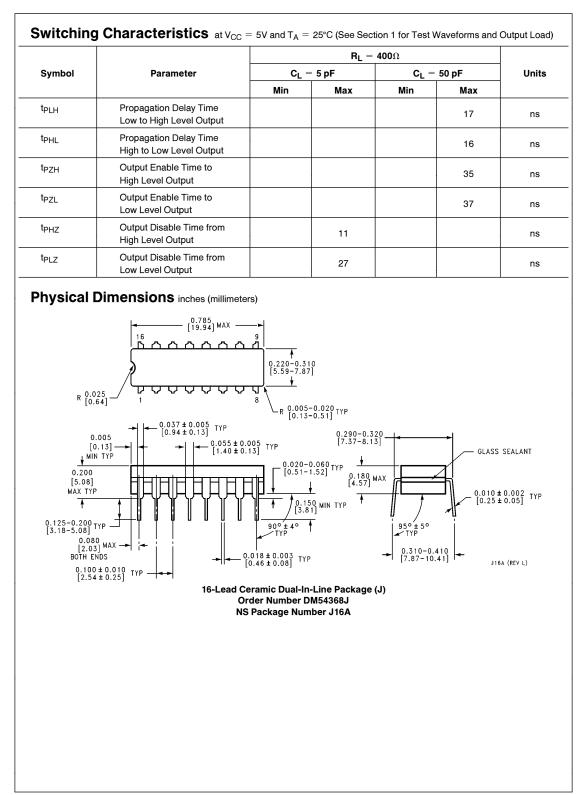
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

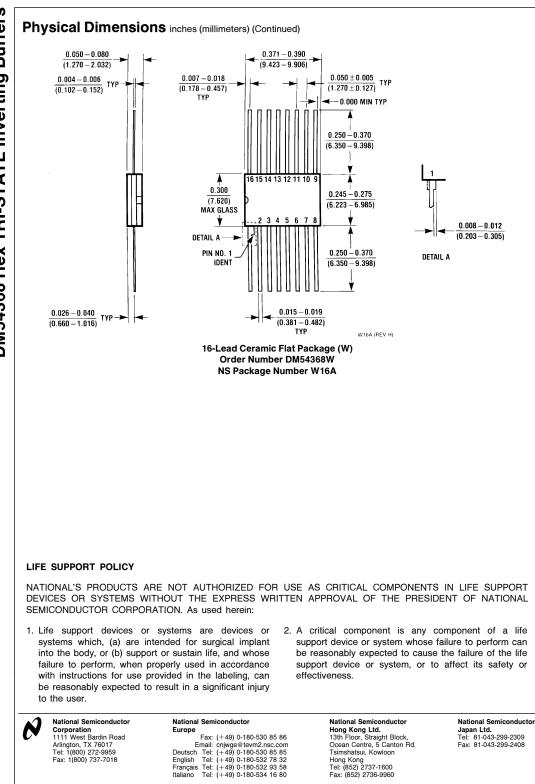
Recommended Operating Conditions

Symbol	Parameter		Units			
Gymbol	i araneter	Min	Nom	Max	Cinta	
V _{CC}	Supply Voltage	4.5	5	5.5	v	
VIH	High Level Input Voltage	2			v	
VIL	Low Level Input Voltage			0.8	v	
I _{OH}	High Level Output Current			-2	mA	
I _{OL}	Low Level Output Current			32	mA	
T _A	Free Air Operating Temperature	-55		125	°C	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				- 1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, I}_{OH} = \text{Max} \\ V_{IL} &= \text{Max, V}_{IH} = \text{Min} \end{split}$		2.4	3.1		v
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= Min, I_{OL} = Max \\ V_{IH} &= Min, V_{IL} = Max \end{split}$			0.2	0.4	v
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
Ін	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$				40	μA
lι	Low Level Input Current	$V_{CC} = Max$ $V_{I} = 0.5V$ (Note 4)	A			-40	
		V _{CC} = Max V _I = 0.4V (Note 5)	A			-1.6	mA
		$V_{CC} = Max$ $V_I = 0.4V$	G			-1.6	
Іоzн	Off-State Output Current with High Level Output Voltage Applied	$\label{eq:VCC} \begin{array}{l} V_{CC} = Max, V_O = 2.4V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				40	μΑ
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\label{eq:VCC} \begin{array}{l} V_{CC} = Max, V_{O} = 0.4V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				-40	μΑ
los	Short Circuit Output Current	V _{CC} = Max (Note 2)		-40		-115	mA
lcc	Supply Current	V _{CC} = Max (Note 3)			59	77	mA


Note 1: All typicals are at $V_{CC} = 5V$, $I_A = 25^{\circ}C$.


Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with the data inputs grounded, and the output controls at 4.5V.

Note 4: Both \overline{G} inputs are at 2V.

Note 5: Both \overline{G} inputs are at 0.4V.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications