
General Description

The MAX1232 microprocessor (µP) supervisory circuit provides µP housekeeping and power-supply supervision functions while consuming only 1/10th the power of the DS1232. The MAX1232 enhances circuit reliability in µP systems by monitoring the power supply, monitoring the software execution, and providing a debounced manual reset input. The MAX1232 is a plug-in upgrade of the Dallas DS1232.

A reset pulse of at least 250ms duration is supplied on power-up, power-down, and low-voltage brownout conditions (5% or 10% supply tolerances can be selected digitally). Also featured is a debounced manual reset input that forces the reset outputs to their active states for a minimum of 250ms. A digitally programmable watchdog timer monitors software execution and can be programmed for timeout settings of 150ms, 600ms, or 1.2s. The MAX1232 requires no external components.

Applications

Computers Controllers Intelligent Instruments Automotive Systems Critical µP Power Monitoring

Typical Operating Circuit

M/XI/M

Maxim Integrated Products 1

Features

- Consumes 1/10th the Power of the DS1232
- Precision Voltage Monitor Adjustable +4.5V or +4.75V
- ◆ Power-OK/Reset Pulse Width-250ms Min
- No External Components
- ♦ Adjustable Watchdog Timer—150ms, 600ms, or 1.2s
- Debounced Manual Reset Input for External Override
- Available in 8-Pin PDIP/SO and 16-Pin Wide SO Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1232C/D	0°C to +70°C	Dice*
MAX1232CPA	0°C to +70°C	8 PDIP
MAX1232CSA	0°C to +70°C	8 SO

Ordering Information continued on last page.

*Contact factory for dice specifications.

PB RST 1

TD 2

TOL 3 GND 4

N.C. 1

N.C. 3

TD 4

N.C. 5

TOL 6

GND 8

N.C. 7

PB RST 2

TOP VIFW

Devices in PDIP and SO packages are available in both leaded and lead-free packaging. Specify lead free by adding the + symbol at the end of the part number when ordering. Lead free not available for CERDIP package.

ΜΛΧΙΜ

MAX1232

DIP/SO

ΜΛΧΙΜ

WIDE SO

MAX1232

Pin Configurations

8 V_{CC}

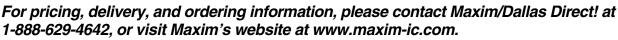
6 RST

5 RST

16 N.C.

15 V_{CC}

14 N.C.


13 ST 12 N.C.

11 RST

10 N.C.

9 RST

7 ST

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin (with respect to GND).....-1V to +7V Operating Temperature Range C Suffix.....0°C to +70°C E Suffix....-40°C to +85°C M Suffix-55°C to +125°C

Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering,	10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

 $(T_A = T_{MIN} \text{ to } T_{MAX})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V _{CC}		4.5	5.0	5.5	V
ST and PBRST Input High Level (Note 1)	V _{IH}		2.0		V _{CC} + 0.3	V
ST and PBRST Input Low Level	VIL		-0.3		+0.8	V

DC Electrical Characteristics

(V_{CC} = +4.5V to +5.5V, $T_A = T_{MIN}$ to T_{MAX})

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Leakage ST, TOL	١L		-1.0		+1.0	μA
Output Current RST	IOH	$V_{OH} = 2.4V$	-1.0	-12		mA
Output Current RST, RST	IOL	$V_{OL} = 0.4 V$	2.0	10		mA
Operating Current (Note 2)	ICC			50	200	μA
V _{CC} 5% Trip Point (Note 3)	VCCTP	TOL = GND	4.50	4.62	4.74	V
V _{CC} 10% Trip Point (Note 3)	VCCTP	$TOL = V_{CC}$	4.25	4.37	4.49	V

Capacitance (Note 4)

 $(T_A = +25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Capacitance ST, TOL	CIN				5	pF
Output Capacitance RST, RST	Cout				7	рF

AC Electrical Characteristics

 $(V_{CC} = +5V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX})$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
PBRST (Note 5)	t _{PB}	Figure 3	20			ms
PBRST Delay	t PBD	Figure 3	1	4	20	ms
Reset Active Time	t _{RST}		250	610	1000	ms
ST Pulse Width	tst	Figure 4	75			ns
		Figure 4, TD pin = 0V	62.5	150	250	
ST Timeout Period	t _{TD}	TD pin = open	250	600	1000	ms
		TD pin = V_{CC}	500	1200	2000	
V _{CC} Fall Time (Note 4)	tF	Figure 5	10			μs
V _{CC} Rise Time (Note 4)	tB	Figure 6	0			μs
V_{CC} Detect to RST High and \overline{RST} Low	t _{BPD}	Figure 7, V _{CC} falling			100	ns
V _{CC} Detect to RST Low and RST Open (Note 6)	tBPU	Figure 8, V _{CC} rising	250	610	1000	ms

Note 1: \overline{PBRST} is internally pulled up to V_{CC} with an internal impedance of typically 40k Ω .

Note 2: Measured with outputs open.

Note 3: All voltages referenced to GND.

Note 4: Guaranteed by desing.

Note 5: PBRST must be held low for a minimum of 20ms to guarantee a reset.

Note 6: t_R = 5µs.

Pin Description

PIN					
WIDE SO	DIP/SO	NAME	FUNCTION		
1, 3, 5, 7, 10, 12, 14, 16	_	N.C.	No Connection		
2	1	PBRST	Pushbutton Reset Input. A debounced active-low input that ignores pulses less than 1ms in duration and is guaranteed to recognize inputs of 20ms or greater.		
4	2	TD	Time Delay Set. The watchdog timebase select input (t_{TD} = 150ms for TD = 0V, t_{TD} = 600ms for TD = open, t_{TD} = 1.2s for TD = V _{CC}).		
6	3	TOL	Tolerance Input. Connect to GND for 5% tolerance or to V _{CC} for 10% tolerance.		
8	4	GND	Ground		
9	5	RST	Reset Output (Active High). Goes active: (1) If VCC falls below the selected reset voltage threshold (2) If PBRST is forced low (3) If ST is not strobed within the minimum timeout period (4) During power-up		
11	6	RST	Reset Output (Active Low, Open-Drain). See RST.		
13	7	ST	Strobe Input. Input for watchdog timer.		
15	8	Vcc	The +5V Power-Supply Input		

Detailed Description

Power Monitor

A voltage detector monitors VCC and holds the reset outputs (RST and RST) in their active states whenever V_{CC} is below the selected 5% or 10% tolerance (4.62V or 4.37V, typically). To select the 5% level, connect TOL to ground. To select the 10% level, connect TOL to V_{CC}. The reset outputs will remain in their active states until V_{CC} has been continuously in-tolerance for a minimum of 250ms (the reset active time) to allow the power supply and μ P to stabilize.

The RST output both sinks and sources current, while the $\overline{\text{RST}}$ output, an open-drain MOSFET, sinks current only and must be pulled high.

Pushbutton Reset Input

The MAX1232's debounced manual reset input (PBRST) manually forces the reset outputs into their active states. The reset outputs go active after PBRST has been held low for a time tPBD, the pushbutton reset delay time. The reset outputs remain in their active states for a minimum of 250ms after PBRST rises above VIH (Figure 3).

A mechanical pushbutton or an active logic signal can drive the PBRST input. The debounced input ignores input pulses less than 1ms and is guaranteed to recognize pulses of 20ms or greater. The PBRST input has an internal pullup to V_{CC} of about 100µA; therefore, an external pullup resistor is not necessary.

The microprocessor drives the \overline{ST} input with an input/output (I/O) line. The microprocessor must toggle the \overline{ST} input within a set period (as determined by TD) to verify proper software execution. If a hardware or software failure keeps \overline{ST} from toggling within the minimum timeout period— \overline{ST} is activated only by falling edges (a high-to-low transition)—the MAX1232 reset outputs are forced to their active states for 250ms (Figure 2). This typically initiates the microprocessor's power-up routine. If the interruption continues, new reset pulses are generated each timeout period until \overline{ST} is strobed. The timeout period is determined by the TD input connected to GND, 600ms with TD floating, or 1200ms with TD connected to V_{CC}.

Watchdog Timer

The software routine that strobes \overline{ST} is critical. The code must be in a section of software that executes frequently enough so the time between toggles is less than the watchdog timeout period. One common technique controls the microprocessor I/O line from two sections of the program. The software might set the I/O line high while operating in the foreground mode, and set it low while in the background or interrupt mode. If both modes do not execute correctly, the watchdog timer issues reset pulses.



Figure 1. Pushbutton Reset

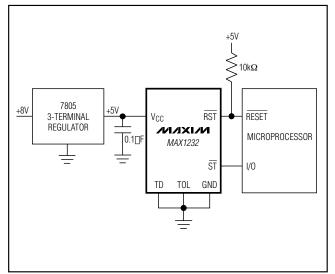


Figure 2. Watchdog Timer

//IXI//

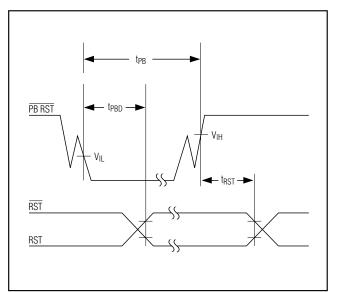


Figure 3. Pushbutton Reset. The debounced PBRST input ignores input pulses less than 1ms and is guaranteed to recognize pulses of 20ms or greater.

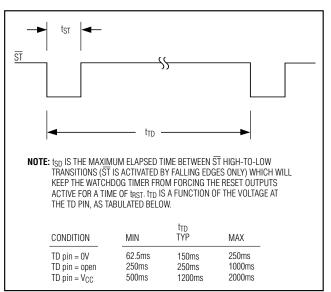


Figure 4. Watchdog Strobe Input

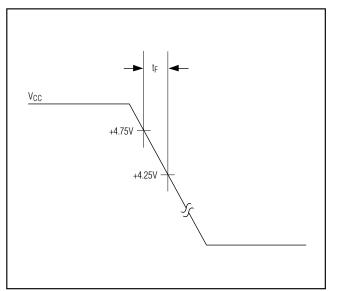


Figure 5. Power-Down Slew Rate

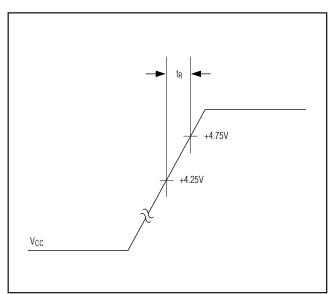


Figure 6. Power-Up Slew Rate

MAX1232

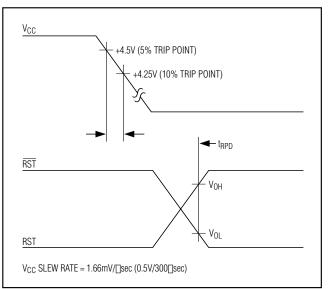
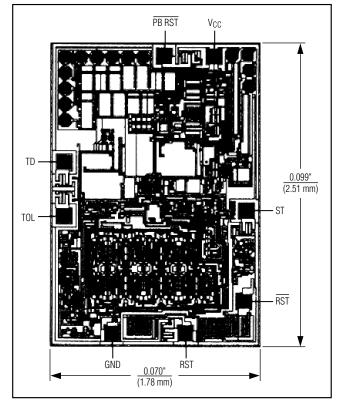



Figure 7. VCC Detect Reset Output Delay (Power-Down)

Chip Topography

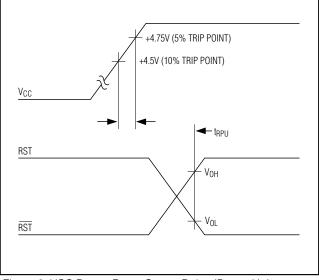


Figure 8. VCC Detect Reset Output Delay (Power-Up)

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX1232CWE	0°C to +70°C	16 Wide SO
MAX1232EPA	-40°C to +85°C	8 PDIP
MAX1232ESA	-40°C to +85°C	8 SO
MAX1232EWE	-40°C to +85°C	16 Wide SO
MAX1232MJA	-55°C to +125°C	8 CERDIP

Ordering Information continued on last page.

*Contact factory for dice specifications.

Devices in PDIP and SO packages are available in both leaded and lead-free packaging. Specify lead free by adding the + symbol at the end of the part number when ordering. Lead free not available for CERDIP package.

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600