Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

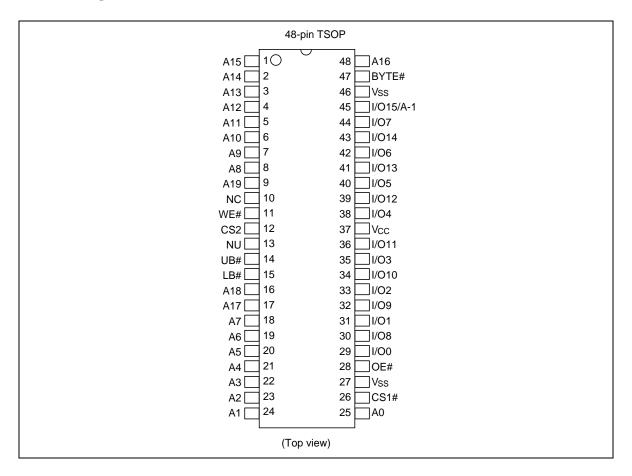
- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Wide Temperature Range Version 16 M SRAM (1-Mword × 16-bit / 2-Mword × 8-bit)

> REJ03C0195-0101 Rev.1.01 Nov.18.2004

Description

The R1LV1616H-I Series is 16-Mbit static RAM organized 1-Mword \times 16-bit / 2-Mword \times 8-bit. R1LV1616H-I Series has realized higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is packaged in 48-pin plastic TSOPI for high density surface mounting.

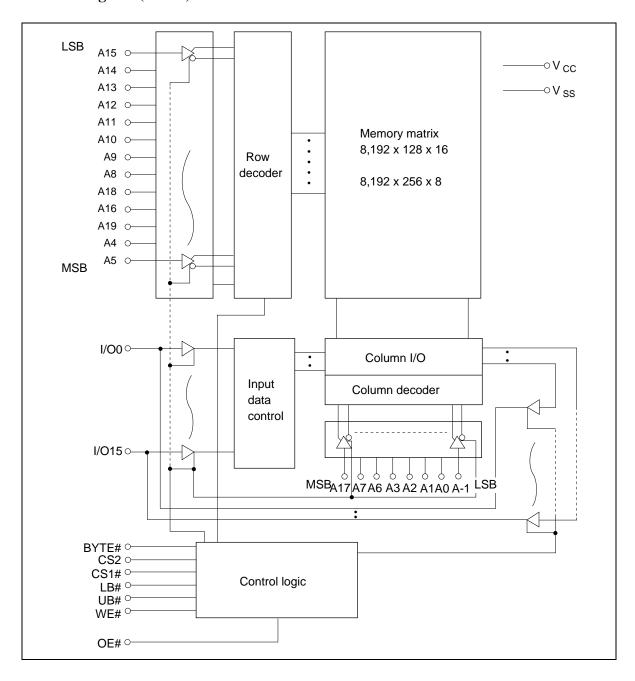

Features

- Single 3.0 V supply: 2.7 V to 3.6 VFast access time: 45/55 ns (max)
- Power dissipation:
 - Active: 9 mW/MHz (typ)
 - Standby: $1.5 \mu W \text{ (typ)}$
- Completely static memory.
 - No clock or timing strobe required
- Equal access and cycle times
- Common data input and output.
 - Three state output
- Battery backup operation.
 - 2 chip selection for battery backup
- Temperature range: -40 to +85°C
- Byte function (×8 mode) available by BYTE# & A-1.

Ordering Information

Type No.	Access time	Package
R1LV1616HSA-4LI	45 ns	48-pin plastic TSOPI (48P3R-B)
R1LV1616HSA-4SI	45 ns	
R1LV1616HSA-5SI	55 ns	

Pin Arrangement



Pin Description (TSOP)

Pin name	Function
A0 to A19	Address input (word mode)
A-1 to A19	Address input (byte mode)
I/O0 to I/O15	Data input/output
CS1# (CS1)	Chip select 1
CS2	Chip select 2
WE# (WE)	Write enable
OE# (OE)	Output enable
LB# (\overline{LB})	Lower byte select
UB# (UB)	Upper byte select
BYTE# (BYTE)	Byte enable
V _{cc}	Power supply
V _{SS}	Ground
NC	No connection
NU*1	Not used (test mode pin)

Note: 1. This pin should be connected to a ground (V_{SS}), or not be connected (open).

Block Diagram (TSOP)

Operation Table (TSOP)

Byte mode

CS1#	CS2	WE#	OE#	UB#	LB#	BYTE#	I/O0 to I/O7	I/O8 to I/O14	I/O15	Operation
Н	×	×	×	×	×	L	High-Z	High-Z	High-Z	Standby
×	L	×	×	×	×	L	High-Z	High-Z	High-Z	Standby
L	Н	Н	L	×	×	L	Dout	High-Z	A-1	Read
L	Н	L	×	×	×	L	Din	High-Z	A-1	Write
L	Н	Н	Н	×	×	L	High-Z	High-Z	High-Z	Output disable

Note: H: V_{IH}, L: V_{IL}, ×: V_{IH} or V_{IL}

Word mode

CS1#	CS2	WE#	OE#	UB#	LB#	BYTE#	I/O0 to I/O7	I/O8 to I/O14	I/O15	Operation
Н	×	×	×	×	×	Н	High-Z	High-Z	High-Z	Standby
×	L	×	×	×	×	Н	High-Z	High-Z	High-Z	Standby
×	×	×	×	Н	Н	Н	High-Z	High-Z	High-Z	Standby
L	Н	Н	L	L	L	Н	Dout	Dout	Dout	Read
L	Н	Н	L	Н	L	Н	Dout	High-Z	High-Z	Lower byte read
L	Н	Н	L	L	Н	Н	High-Z	Dout	Dout	Upper byte read
L	Н	L	×	L	L	Н	Din	Din	Din	Write
L	Н	L	×	Н	L	Н	Din	High-Z	High-Z	Lower byte write
L	Н	L	×	L	Н	Н	High-Z	Din	Din	Upper byte write
L	Н	Н	Н	×	×	Н	High-Z	High-Z	High-Z	Output disable

Note: H: V_{IH}, L: V_{IL}, ×: V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to V _{SS}	V _{CC}	-0.5 to +4.6	V
Terminal voltage on any pin relative to V _{SS}	V _T	-0.5^{*1} to $V_{CC} + 0.3^{*2}$	V
Power dissipation	P _T	1.0	W
Storage temperature range	Tstg	-55 to +125	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Notes: 1. V_T min: -2.0 V for pulse half-width ≤ 10 ns.

2. Maximum voltage is +4.6 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{CC}	2.7	3.0	3.6	V	
	V _{SS}	0	0	0	V	
Input high voltage	V_{IH}	2.2	_	V _{CC} + 0	.3 V	
Input low voltage	V_{IL}	-0.3	_	0.6	V	1
Ambient temperature range	Ta	-40	_	+85	°C	•

Note: 1. V_{IL} min: -2.0 V for pulse half-width ≤ 10 ns.

DC Characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions*2
Input leakage cui	rent	I _{LI}	_	_	1	μΑ	$Vin = V_{SS}$ to V_{CC}
Output leakage of	urrent	I _{LO}	_	_	1	μΑ	$\begin{split} &CS1\# = V_{IH} \text{ or } CS2 = V_{IL} \text{ or} \\ &OE\# = V_{IH} \text{ or } WE\# = V_{IL} \text{ or} \\ &LB\# = UB\# = V_{IH}, \ V_{I/O} = V_{SS} \text{ to } V_{CC} \end{split}$
Operating curren	t	I _{CC}	_	_	20	mA	$CS1\# = V_{IL}, CS2 = V_{IH},$ $Others = V_{IH}/V_{IL}, I_{I/O} = 0 \text{ mA}$
Average operation	g current	I _{CC1} (READ)	_	22* ¹	35	mA	$\begin{aligned} &\text{Min. cycle, duty} = 100\%, \\ &\text{I}_{\text{I/O}} = 0 \text{ mA, CS1\#} = \text{V}_{\text{IL}}, \text{CS2} = \text{V}_{\text{IH}}, \\ &\text{WE\#} = \text{V}_{\text{IH}}, \text{Others} = \text{V}_{\text{IH}}/\text{V}_{\text{IL}} \end{aligned}$
		I _{CC1}	_	30* ¹	50	mA	Min. cycle, duty = 100%, $I_{I/O}$ = 0 mA, CS1# = V_{IL} , CS2 = V_{IH} , Others = V_{IH}/V_{IL}
		I _{CC2} * ³ (READ)	_	3* ¹	8	mA	Cycle time = 70 ns, duty = 100%, $I_{I/O}$ = 0 mA, CS1# = V_{IL} , CS2 = V_{IH} , WE# = V_{IH} , Others = V_{IH}/V_{IL} Address increment scan or decrement scan
		I _{CC2} * ³	_	20* ¹	30	mA	Cycle time = 70 ns, duty = 100%, $I_{I/O}$ = 0 mA, CS1# = V_{IL} , CS2 = V_{IH} , Others = V_{IH}/V_{IL} Address increment scan or decrement scan
		I _{CC3}	_	3* ¹	8	mA	$\begin{split} & \text{Cycle time} = 1 \; \mu\text{s, duty} = 100\%, \\ & I_{I/O} = 0 \; \text{mA, CS1\#} \leq 0.2 \; \text{V,} \\ & \text{CS2} \geq V_{CC} - 0.2 \; \text{V} \\ & V_{IH} \geq V_{CC} - 0.2 \; \text{V, V}_{IL} \leq 0.2 \; \text{V} \end{split}$
Standby current		I _{SB}	_	0.1* ¹	0.5	mA	CS2 = V _{IL}
Standby current	-4SI -5SI	I _{SB1}	_	0.5* ¹	8	μΑ	0 V \leq Vin (1) 0 V \leq CS2 \leq 0.2 V or (2) CS1# \geq V _{CC} - 0.2 V, CS2 \geq V _{CC} - 0.2 V or
	-4LI	I _{SB1}	_	0.5* ¹	25	μΑ	(3) LB# = UB# \geq V _{CC} - 0.2 V, CS2 \geq V _{CC} - 0.2 V, CS1# \leq 0.2 V Average value
Output high volta	ge	V _{OH}	2.4	_	_	V	I _{OH} = −1 mA
		V _{OH}	V _{CC} - 0.2	2—	_	V	I _{OH} = -100 μA
Output low voltage	je	V _{OL}	_	_	0.4	V	I _{OL} = 2 mA
		V _{OL}	_	_	0.2	V	$I_{OL} = 100 \mu\text{A}$

Notes: 1. Typical values are at $V_{CC} = 3.0 \text{ V}$, $Ta = +25^{\circ}C$ and not guaranteed.

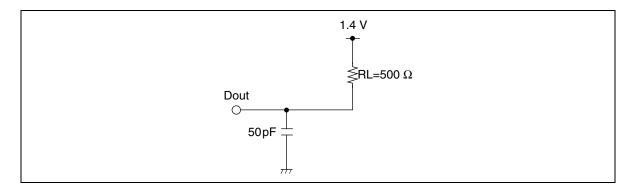
2. BYTE# \geq $V_{CC}-0.2$ V or BYTE# ≤ 0.2 V

 I_{CC2} is the value measured while the valid address is increasing or decreasing by one bit. Word mode: LSB (least significant bit) is A0. Byte mode: LSB (least significant bit) is A-1.

Capacitance

 $(Ta = +25^{\circ}C, f = 1.0 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	_	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}	_	_	10	pF	V _{I/O} = 0 V	1


Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics

(Ta = -40 to +85°C, V_{CC} = 2.7 V to 3.6 V, unless otherwise noted.)

Test Conditions

- Input pulse levels: $V_{IL} = 0.4 \text{ V}$, $V_{IH} = 2.4 \text{ V}$
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.4 V
- Output load: See figures (Including scope and jig)

Read Cycle

R1LV1616H-I

		-4SI, -4LI		-5SI				
Parameter	Symbol	Min	Max	Min	Max	_ Unit	Notes	
Read cycle time	t _{RC}	45	_	55	_	ns		
Address access time	t _{AA}		45		55	ns		
Chip select access time	t _{ACS1}	_	45	_	55	ns		
	t _{ACS2}	_	45	_	55	ns		
Output enable to output valid	t _{OE}	_	30	_	35	ns		
Output hold from address change	t _{OH}	10	_	10	_	ns		
LB#, UB# access time	t _{BA}	_	45	_	55	ns		
Chip select to output in low-Z	t _{CLZ1}	10	_	10	_	ns	2, 3	
	t _{CLZ2}	10	_	10	_	ns	2, 3	
LB#, UB# enable to low-Z	t _{BLZ}	5	_	5	_	ns	2, 3	
Output enable to output in low-Z	t _{OLZ}	5		5	_	ns	2, 3	
Chip deselect to output in high-Z	t _{CHZ1}	0	20	0	20	ns	1, 2, 3	
	t _{CHZ2}	0	20	0	20	ns	1, 2, 3	
LB#, UB# disable to high-Z	t _{BHZ}	0	15	0	20	ns	1, 2, 3	
Output disable to output in high-Z	t _{OHZ}	0	15	0	20	ns	1, 2, 3	

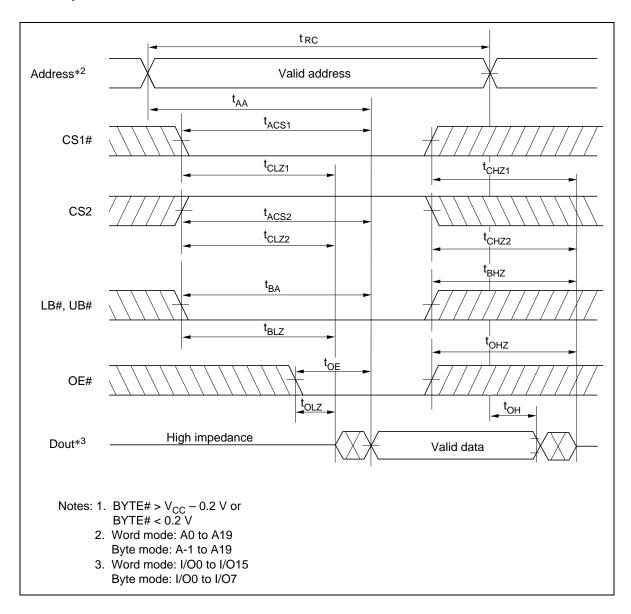
Write Cycle

R1LV1616H-I

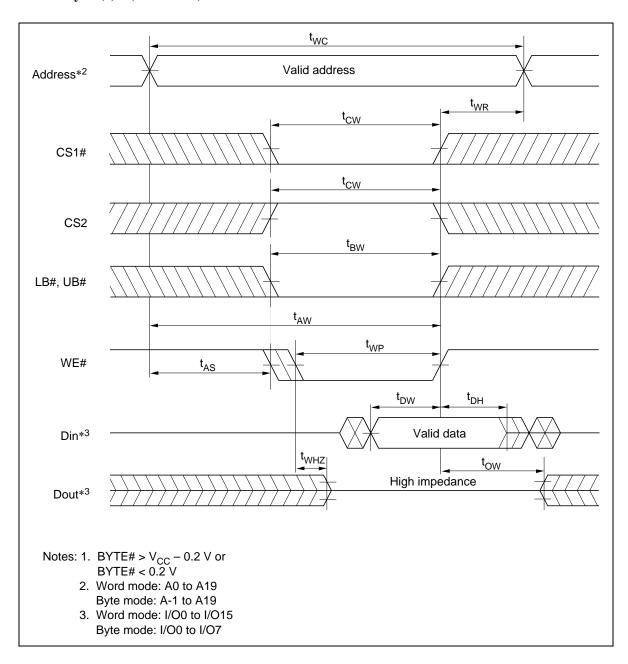
		-4SI, -	4LI	-5SI			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{WC}	45	_	55	_	ns	
Address valid to end of write	t _{AW}	45		50	_	ns	
Chip selection to end of write	t _{CW}	45	_	50	_	ns	5
Write pulse width	t _{WP}	35		40		ns	4
LB#, UB# valid to end of write	t _{BW}	45		50		ns	
Address setup time	t _{AS}	0		0	_	ns	6
Write recovery time	t _{WR}	0		0		ns	7
Data to write time overlap	t _{DW}	25		25		ns	
Data hold from write time	t _{DH}	0		0		ns	
Output active from end of write	t _{OW}	5	_	5	_	ns	2
Output disable to output in high-Z	t _{OHZ}	0	15	0	20	ns	1, 2
Write to output in high-Z	t _{WHZ}	0	15	0	20	ns	1, 2

Byte Control

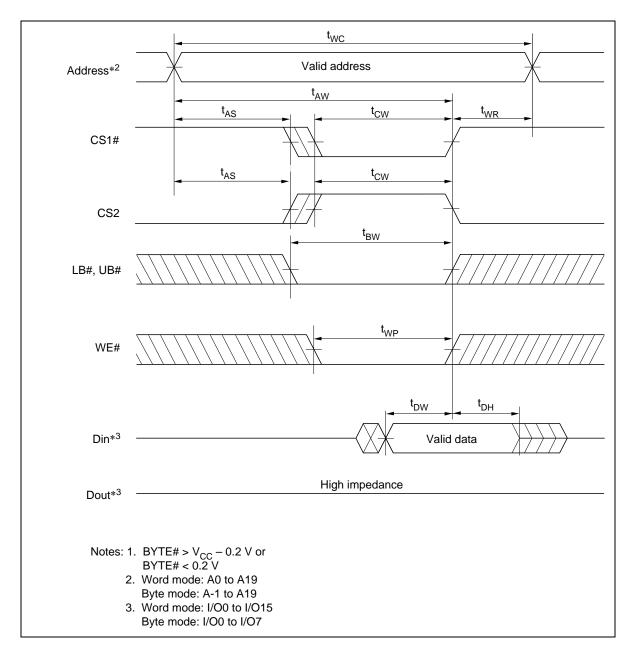
R1	I١	/1	61	61	H-I

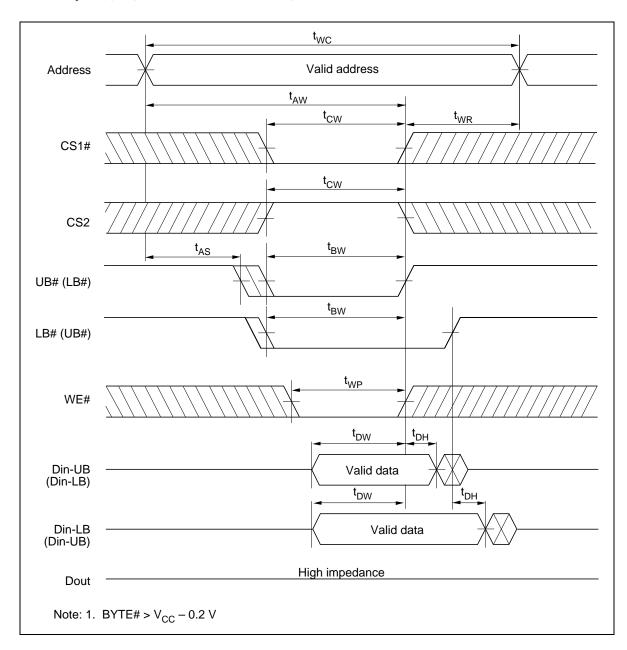

		-4SI, -4LI		-5SI		_		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes	
BYTE# setup time	t _{BS}	5	_	5	_	ms		
BYTE# recovery time	t _{BR}	5		5		ms		

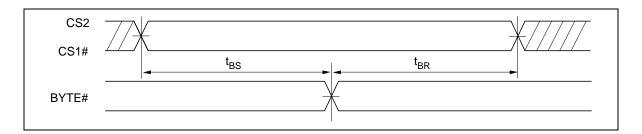
Notes: 1. t_{CHZ}, t_{OHZ}, t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.


- 2. This parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#. A write begins at the latest transition among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low. A write ends at the earliest transition among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. t_{WP} is measured from the beginning of write to the end of write.
- 5. t_{CW} is measured from the later of CS1# going low or CS2 going high to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- 7. t_{WR} is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.

Timing Waveform


Read Cycle*1

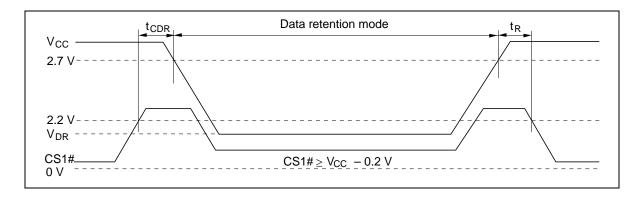

Write Cycle (1)*1 (WE# Clock)


Write Cycle (2)* 1 (CS1#, CS2 Clock, OE# = V_{IH})

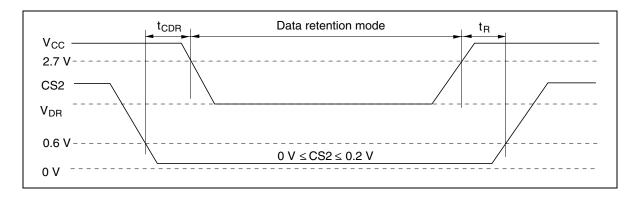
Write Cycle (3)* 1 (LB#, UB# Clock, OE# = V_{IH})

Byte Control (TSOP)

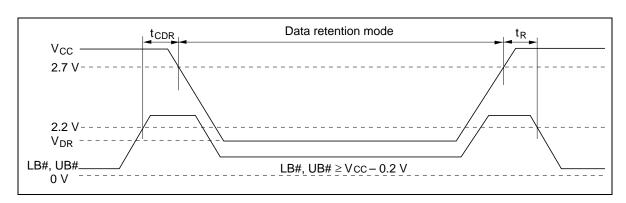
Low V_{CC} Data Retention Characteristics


 $(Ta = -40 \text{ to } +85^{\circ}C)$

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions* ^{2, 3}
V _{CC} for data retention		V_{DR}	1.5		3.6	V	$\begin{aligned} &\text{Vin} \ge 0 \text{ V} \\ &\text{(1)} \ \ 0 \text{ V} \le \text{CS2} \le 0.2 \text{ V or} \\ &\text{(2)} \ \ \text{CS2} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ &\text{CS1\#} \ge \text{V}_{\text{CC}} - 0.2 \text{ V or} \\ &\text{(3)} \ \ \text{LB\#} = \text{UB\#} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ &\text{CS2} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ &\text{CS1\#} \le 0.2 \text{ V} \end{aligned}$
Data retention current	-4SI -5SI	I _{CCDR}	_	0.5* ¹	8	μΑ	$\begin{split} &V_{CC} = 3.0 \text{ V}, \text{ Vin } \ge 0 \text{ V} \\ &(1) \text{ 0 V} \le \text{CS2} \le 0.2 \text{ V or} \\ &(2) \text{ CS2} \ge \text{V}_{CC} - 0.2 \text{ V}, \\ &\text{CS1}\# \ge \text{V}_{CC} - 0.2 \text{ V or} \\ &(3) \text{ LB\#} = \text{UB\#} \ge \text{V}_{CC} - 0.2 \text{ V}, \\ &\text{CS2} \ge \text{V}_{CC} - 0.2 \text{ V}, \\ &\text{CS1\#} \le 0.2 \text{ V} \\ &\text{Average value} \end{split}$
	-4LI	I _{CCDR}	_	0.5* ¹	25	μА	
Chip deselect to data retention time		t _{CDR}	0	_	_	ns	See retention waveforms
Operation recovery time		t _R	5		_	ms	


Notes: 1. Typical values are at $V_{CC} = 3.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

- 2. BYTE# $\geq V_{CC} 0.2 \ V$ or BYTE# $\leq 0.2 \ V$
- 3. CS2 controls address buffer, WE# buffer, CS1# buffer, OE# buffer, LB#, UB# buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE#, OE#, CS1#, LB#, UB#, I/O) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be $CS2 \ge V_{CC} 0.2 \text{ V}$ or $0 \text{ V} \le CS2 \le 0.2 \text{ V}$. The other input levels (address, WE#, OE#, LB#, UB#, I/O) can be in the high impedance state.


$Low~V_{CC}~Data~Retention~Timing~Waveform~(1)~(CS1\#~Controlled)$

$Low\ V_{CC}\ Data\ Retention\ Timing\ Waveform\ (2)\ (CS2\ Controlled)$

Low V_{CC} Data Retention Timing Waveform (3) (LB#, UB# Controlled)

Revision History

R1LV1616H-I Series Data Sheet

Rev.	Date	Contents of Modification		
		Page	Description	
1.00	Apr. 22, 2004	_	Initial issue	
1.01	Nov. 18, 2004	_	Addition of 2-Mword \times 8-bit function	

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology

- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001