## RC6564A

## IF-to-Digital ${ }^{\text {T }}$ Converter

## Features

- Integrated IF-to-Digital ${ }^{\mathrm{TM}}$ conversion
- IF bandwidth from 30 to 80 MHz
- 40 MHz 8 bit ADC
- Operating range between 8.5 V to 13.2 V
- Demodulation of 64QAM constellations
- Simple interface to SAW filter and digital demodulator
- Tuner control feature interfaces with variety of tuners
- Low phase noise LO generation
- Crystal oscillator for fundamental or 3rd overtone mode
- 63 dB peak conversion gain from IF to baseband
- 30dB minimum AGC range
- 45 dB IMD3 end-to-end
- On-chip 2V stable voltage reference
- 44-pin PLCC package


## General Description

The RC6564A is a single chip solution for downconverting and digitizing QAM signals that can be decoded in the digital domain by custom DSP demodulators. The RC6564A performs IF amplification with gain control, frequency down conversion, frequency synthesis for mixer Local Oscillator (LO) and system clock generation, and baseband quantization with an Analog to Digital converter. The input can directly interface to a SAW filter and maintain low noise figure. Depending on the signal input level the gain may be controlled over a 30 dB range through an external analog input signal. The gain reduction is done in two stages and orchestrated in such a manner as to minimize noise figure and signal distortion. The IF output is then down converted

## Applications

- QAM receivers
- Set-top receivers for digital cable
- Internet surf-boards
- Cable modems
- Desktop video conferencing
- IF sampling decoders
and filtered using a double balanced mixer. This output can be filtered even further, externally, before being quantized by the on-chip A/D converter.The digital data output can be processed to derive information for automatic gain control (AGC) and automatic frequency control (AFC). RC6564A is optimized to work with DSP decoders based on IF sampling. The RC6564A also provides an optimum tuner AGC control voltage useful for controlling the front-end tuner gain.

The IF and mixer section works at 9 V . The oscillator works on 5 V supply. The $\mathrm{A} / \mathrm{D}$ converter has one analog 5 V supply and two digital 5 V supplies. The RC6564A is available in a 44 pin PLCC package.

## Block Diagram



## Functional Description

The RC6564A performs all the IF and baseband signal processing/conversion with minimal external components. As shown in the Block Diagram, the RC6564A consists of three general sections:

1. IF Gain blocks with Gain Control
2. IF down conversion with LO \& Clock Generation
3. Analog to Digital Conversion

## The IF Section

The signal input is fed into a variable gain amplifier capacitively coupled to the subsequent stages. The gain is directly proportional to IF_AGC voltage.
To minimize the noise figure degradation with gain reduction the gains in various stages are not reduced simultaneously. The transition point is set by the voltage on T_Strt pin. T_Strt sets the T_AGC trigger to control the front tuner gain.

## IF Down Conversion \& Frequency Synthesis

This section consists of a double balanced linear mixer. The output of the front-end gain stage is capacitively coupled to the input (RF port) of the mixer. The mixer output is further amplified. The signals for the Local Oscillator (LO) port of
the mixer can be directly driven or synthesized through the VCO (Voltage Controlled Oscillator). The mixer output is partially filtered on-chip but may need to be further filtered externally before being fed to the A/D input. The RC6564A also has a crystal oscillator circuit that can be used for generating a master clock for frequency synthesis.

## Analog-to-Digital Converter

The analog-to-digital converter employs a two-step 9-bit architecture to convert analog signals into digital words at sample rates up to 40 Msps (Mega samples per second). An integral Track/Hold circuit delivers excellent performance on signals with full-scale components up to 12 MHz . A dynamic performance of more than 7.4 effective bits is delivered at the outputs D0 through D7. The A/D digital outputs are three-state and TTL/CMOS compatible. The down converted output at BB_OUT can be externally filtered and directly connected to the A/D input. Sampling of the applied input signals takes place on the falling edge of the AD_CLK. The output word is delayed by 2.5 AD _CLK cycles. An output enable control $\overline{\mathrm{OE}}$ places the outputs in high impedance state when HIGH. The outputs are enabled when $\overline{\mathrm{OE}}$ is LOW as described in the Timing Diagrams section.

## Pin Assignments



## Pin Descriptions

| Pin Name | Pin Number | Pin Function Description |
| :--- | :---: | :--- |
| AD_CLK | 29 | Clock Input for A/D Converter. AD_In sampled on the falling edge. |
| AGND | 12 | Analog Ground Connection for A/D. |
| AD_In | 11 | Analog Input to the A/D Converter Section. |
| BBGND | 7 | Ground Connection for IF. |
| BB_Out | 8 | Base-band Voltage Output. |
| D0-D3 | $17,18,19,20$ | Output Lower Significant Bits. Valid data on rising edge of AD_CLK. |
| D4-D7 | $22,23,24,25$ | Output Upper Significant Bits. Valid data on rising edge of AD_CLK. |
| DGND1 | 14 | Ground Connection for A/D. |
| DGND2 | 16 | Ground Connection for A/D. |
| GND_XTL | 44 | Crystal Oscillator Ground for IF. |
| HFGND | 38 | Analog Ground Connection for IF. |
| IF_AGC | 41 | Input Voltage for IF Front End Gain Control |
| IF_IN+, IF_IN- | 36,37 | IF Inputs. |
| N/C | $21,26,28,31$ | No Connection |
| OE | 15 | Input for Enabling Digital Outputs. When LOW, D0-D7 are enabled. When <br> HIGH D0-D7 are in high impedance state. <br> RB |
| RFGND | 13 | Bottom Input Reference for A/D. |
| RT | 3 | Ground Connection for High Frequency Mixed Signal Sections for IF. |
| SGND | 32 | Top Input Reference Voltage for A/D. |
| T_AGC | 40 | Analog Ground Connection for IF. |
| T_STRT | 42 | Threshold Voltage Input for Starting Tuner Gain Control. |
| VCC_BB | 9 | Baseband Supply Voltage. Typically 9V for IF. |

Pin Descriptions (continued)

| Pin Name | Pin Number | Pin Function Description |
| :--- | :---: | :--- |
| VCC2 | 34 | Analog Supply Voltage (9V) for IF. |
| VCC_HF | 39 | Analog Supply Voltage (9V) for IF. |
| VCC_RF | 4 | Supply Voltage (5V) for High Frequency Mixed Signal Sections for IF. |
| VCC_XTL | 43 | Supply voltage for Crystal Oscillator for IF. |
| VCO_Fs | 6 | VCO External Frequency Select Circuit Connection. |
| VCO_In | 5 | VCO Input. Can be used for directly feeding external LOW. |
| VDDD1 | 30 | +5V Digital Supply for A/D. |
| VDDD2 | 27 | +5V Digital Supply for A/D. |
| VDDA | 10 | +5V Power Supply Voltage for A/D. |
| VRT | 33 | Output Reference Voltage from IF for Top of A/D Input Range. |
| XTL_Out | 2 | Crystal Oscillator Output (inverted). |
| XTL_Tnk | 1 | Crystal Oscillator Frequency Select Circuit Connection. |

Absolute Maximum Ratings (beyond which the device may be damaged) ${ }^{1}$

| Parameter |  | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IF_IN+, IF_IN-, IF_AGC, T_Strt | Input Voltages |  | Gnd-0.3 |  | Vcc+0.3 | V |
| AD_IN | A/D input voltage |  | AGND |  | VDDA | V |
| VCC_RF, VCC_BB' VCC_HF', VCC2, VCC_XTL | Analog Supply Voltages |  |  |  | 13.5 | V |
| VDDA, VDDD 1,2 | Digital Supply Voltages |  |  |  | 7 | V |
| Tstg | Storage Temperature |  | -40 |  | 125 | ${ }^{\circ} \mathrm{C}$ |

Note:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

## Operating Conditions

| Parameter |  | Min | Typ | Max | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| VCC | Analog Supply Voltage | 8.5 | 9 | 13.2 | V |
| VCC_RF, <br> VCC_XTL | Supply Voltage for IF and Mixer, <br> Supply Voltage for XTLOSC and VCO | 4.75 | 5 | 5.25 | V |
| VDDA,D | Digital Supply Voltages | 4.75 | 5 | 5.25 | V |
| T | Temperature | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |
| RT | A/D Top Reference Voltage | 1 | 2.5 |  | V |
| RB | A/D Bottom Reference Voltage |  | 0 | 0.7 | V |
| VIN | Analog Input to A/D | RB |  | RT | V |
| VIH | Digital Inputs - Logic HIGH | 0.7 VDDD |  | VDDD | V |
| VIL | Digital Input - Logic LOW | GND |  | 0.3 VDDD | V |
| $\theta J A$ | Thermal Coefficient Junction to Ambient |  | 43 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta J C$ | Thermal Coefficient Junction to Case |  | 16 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## DC Electrical Characteristics

VCCRF, VCC_XTL $=5 \mathrm{~V} ; \mathrm{V}$ CCHF, $\mathrm{VCC} \_\mathrm{BB}, \mathrm{VCC2}=9 \mathrm{~V} ; \mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise specified.

| Parameter |  | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PWIF | Power Consumption in IF |  |  | 0.4 | 0.5 | W |
| PWAD | Power Consumption in ADC | ADCLK = 20 Msps |  | 0.1 | 0.16 | W |
| ICCDD | Digital Supply Current | 5V, 20Msps |  | 20 | 30 | mA |
| ICCHF | Front End Supply Current | 9V Supply |  | 20 | 25 | mA |
|  |  | 12V Supply |  | 27 | 35 |  |
| ICCBB | Back and Baseband Current | 9V Supply |  | 21 | 25 | mA |
| ICCRF | RF Supply Current | 5V Supply |  | 6 | 10 | mA |
| VRT | Reference Output Voltage |  | 1.95 | 2.05 | 2.15 | V |
| $\Delta \mathrm{VBB}$ | Base-band DC Output Swing |  | 3.5 |  |  | Vpp |
| Tagc_hi | Tuner AGC for Maximum Gain | IF_AGC = 5V |  | 7.5 |  | V |
| Tagc_lo | Tuner AGC for Minimum Gain | IF_AGC = 2V |  | 2 |  | V |
| RAD_IN | A/D Input Impedance |  | 500 | 1000 |  | $\mathrm{K} \Omega$ |
| VOH | Output Voltage, HIGH, D0-D7 | $\mathrm{loh}=2.5 \mathrm{~mA}$ | 3.5 |  |  | V |
| VOL | Output Voltage, LOW, D0-D7 | $\mathrm{lol}=4 \mathrm{~mA}$ |  |  | 0.4 | V |
| IOZ | Hi-Z Output Leakage | Maximum Reference Current Output |  |  | $\pm 5$ | $\mu \mathrm{A}$ |

## AC Electrical Characteristics

$V C C \_X T L, V C C \_R F=5 V ; V C C \_H F, V C C \_B B=9 V ; I F \_A G C=2 V ; A D \_C L K=20 M s p s ; T s t r t=5 V$;
$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise specified.

| Parameter |  | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ZIFin | AC Input Impedance | @43.75MHz | 2 |  |  | K $\Omega$ |
| CIFin | AC Equivalent Input Cap | IF_IN $\pm$ |  | 6 |  | pF |
| Vis | Input Sensitivity at Maximum Gain |  |  | 250 |  | $\mu \mathrm{V}$ |
| IMD3 | Two Tone Intermod | $\begin{aligned} & \text { f1/f2 = } 43.75 / 42.75 \mathrm{Mhz}, \\ & \mathrm{IF} \text { IN }=-16 \mathrm{dBm}, \\ & \text { VCO_IN }=0.1 \mathrm{Vpp}, \\ & \text { LO }=38.75 \mathrm{MHz}, \\ & \text { See Note } 1 \end{aligned}$ |  | 45 |  | dB |
| G | IF to Baseband Gain | IF_AGC = 2V | 35 | 40 |  | dB |
| NF | Noise Figure (Maximum Gain) |  |  | 9 |  | dB |
| Ragc | AGC Gain Control Range | IF_AGC $=0.8 \mathrm{~V}-4 \mathrm{~V}$ | 30 | 35 |  | dB |
| Sagc | AGC Sensitivity Average Slope | $\begin{aligned} & \hline \text { T_Strt }=5 \mathrm{~V}, \\ & \text { IF_AGC }=0.8 \mathrm{~V}-4 \mathrm{~V} \end{aligned}$ |  | 10 |  | dB/V |
| BW_IF | IF Bandwidth | 0.1 dB for 10 MHz Bands <br> 0.1 dB for 5 MHz Bands | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | 43.75 | $\begin{aligned} & 75 \\ & 80 \end{aligned}$ | MHz |
| fLO | Down Conversion Frequency | VCO_IN = 0.1Vpp |  |  | 100 | MHz |
| ¢nLO | VCO Phase Noise | @ $\pm 10 \mathrm{KHz}$ Offset |  |  | -100 | $\mathrm{dBC} / \mathrm{Hz}$ |
| ¢ XXTL | XTAL OSC Phase Noise | @ $\pm 10 \mathrm{KHz}$ Offset |  |  | -100 | $\mathrm{dBC} / \mathrm{Hz}$ |
| CAD | ADC Input Capacitance |  |  | 4 |  | pF |
| Eli | Integral Linearity Error |  |  | $\pm 0.5$ | $\pm 0.75$ | LSB |
| Eld | Differential Linearity Error |  |  | $\pm 0.3$ | $\pm 0.5$ | LSB |

AC Electrical Characteristics (continued)
VCC_XTL, VCC_RF = 5V; VCC_HF, VCC_BB = 9V; IF_AGC = 2V; AD_CLK = 20Msps; Tstrt = 5V;
$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise specified.

| Parameter |  | Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| BW | A/D sine wave Bandwidth |  |  |  | 12 | MHz |
| Eap | Aperture Error |  |  | 30 |  | pS |
| SNR | Signal-to-Noise ratio | AD_CLK $=20 \mathrm{MSPS}$, <br> AD_IN $=5 \mathrm{MHz}$ |  | 45 |  | dB |
| tHO | Output Hold time | Cload $=15 \mathrm{pF}$ | 5 |  |  | nS |
| tDO | Output Delay time | Cload $=15 \mathrm{pF}$ |  |  | 20 | nS |
| tSTO | Sampling time offset |  | 2 | 5 | 8 | nS |

## Notes:

1. With the application of antialiasing filter as load and 2 Vpp at $\mathrm{A} / \mathrm{D}$ input.

## Analog to Digital Conversion Timing Diagram



## Typical Performance Characteristics



Figure 1. Typical IF AGC Control Characteristics


Figure 2. IF Input Bandwidth

## Typical Performance Characteristics (Continued)



Figure 3. SFDR vs RC6564A (Fairchild Semiconductor Demo Board with 64 QAM demodulator)

## Applications

The RC6564A is specially suited for use in set-top boxes and cable modems for decoding QAM modulated signals based on IF sampling techniques. The RC6564A simplifies the front-end design and makes it more cost effective by integrating in a single chip the IF-to-Digital functionality. The other major components required for the front-end of the modem are the tuner, a SAW filter and the appropriate DSP demodulator/decoder.

## Modem Applications

Figure 4 below shows the application of RC6564A in IF bandpass sampling decoding for cable access. The on-chip VCO provides low-phase noise characteristics. The VCO can be pulled by the voltage control on VCO_CNTRL. The sam-


S/N vs. IF Input Power RC6564 (Fairchild Semiconductor Demo Board with 64 QAM demodulator)
pling clock for the $\mathrm{A} / \mathrm{D}$ conversion can be derived from the master clock through external frequency synthesis. The full scale reference signal for $A / D$ is conveniently derived from the VRT output. The baseband output is referenced such that the filtered output is automatically in the mid-scale of the A/ D input. The filtered output can be a.c. coupled to the AD_In. In the application below an external low-pass filter is used to bandlimit the signals before conversion. The gain is adjusted by the average voltage on the IF_AGC line to keep the signal in the optimum range of the A/D input. The T_AGC output is used to control the tuner gain when the input levels into the RC6564A are too high.


Figure 4. Application of RC6564A in Cable Modem Receivers (Fairchild Semiconductor Demo Board with 64 QAM demodulator)

## VCO Internal Schematic



The VCO can be designed as a Colpitts oscillator. The above circuit application shows VCO with adjustable typical value of 38.75 MHz . The frequency is controlled by the external resonance circuit. The oscillating transistor is Q1 in
common base configuration. To inject signal in the mixer in place of LO, the VCO_Fs must be open. The signal on the pin VCO_In should be under 100 mV p-p and AC coupled.

## Crystal Oscillator Internal Schematic



The crystal oscillator is an ECL inverter. It is necessary to bias the XTL-Tnk with a choke to 5 V VCC_XTL power supply. The output is about 0.7V DC lower than VCC_XTL with
an approximate swing of 0.5 Vpp at the output. If the oscillator is not used, it is good to ground XTL_Tnk pin.

## Logic Feedthrough

The Logic Feedthrough in the IF section can be minimized by taking the following precautions:

1. It is recommended to have a separate isle for the IF section and the $\mathrm{A} / \mathrm{D}$ section.
2. All logic circuits in the neighborhood of RC6564A must be isolated. This can be accomplished by carefully decoupling all power supplies and all logic layout signals.
3. It is recommended to have as much ground plane as possible on the top and bottom of the board.

## Mechanical Dimensions - 44-Lead PLCC (QB) Package

| Symbol | Inches |  | Millimeters |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Max. | Min. | Max. |  |
| A | . 165 | . 180 | 4.19 | 4.57 |  |
| A1 | . 090 | . 120 | 2.29 | 3.05 |  |
| A2 | . 020 | - | . 51 | - |  |
| B | . 013 | . 021 | . 33 | . 53 |  |
| B1 | . 026 | . 032 | . 66 | . 81 |  |
| D/E | . 685 | . 695 | 17.40 | 17.65 |  |
| D1/E1 | . 650 | . 656 | 16.51 | 16.66 | 3 |
| D3/E3 | . 500 BSC |  | 12.7 BSC |  |  |
| e | . 050 BSC |  | 1.27 BSC |  |  |
| J | . 042 | . 056 | 1.07 | 1.42 | 2 |
| ND/NE | 11 |  | 11 |  |  |
| N | 44 |  | 44 |  |  |
| ccc | - | . 004 | - | 0.10 |  |

## Notes:

1. All dimensions and tolerances conform to ANSI Y14.5M-1982
2. Corner and edge chamfer $(\mathrm{J})=45^{\circ}$
3. Dimension D1 and E1 do not include mold protrusion. Allowable protrusion is $.101 "(.25 \mathrm{~mm})$


## Ordering Information

| Product Number | Temperature Range | Screening | Package | Package Marking |
| :--- | :---: | :---: | :---: | :---: |
| RC6564AV | $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ | Commercial | 44 -Lead PLCC | RC6564AV |

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonable expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Fairchild Semiconductor Corporation | Fairchild Semiconductor Europe |  | Fairchild Semiconductor Hong Kong Ltd. | National Semiconductor Japan Ltd. |
| :---: | :---: | :---: | :---: | :---: |
| Americas | Fax: | +49 (0) 1 80-530 8586 | 13th Floor, Straight Block, | Tel:81-3-5620-6175 |
| Customer Response Center | Email: | europe.support@nsc.com | Ocean Center, 5 Canto Rd. | Fax:81-3-5620-6179 |
| Tel:1-888-522-5372 | Deutsch Tel: | +49 (0) 8 141-35-0 | Tsimshatsui, Kowloon |  |
|  | English Tel: | +44 (0) 1 793-85-68-56 | Hong Kong |  |
|  | Italy Tel: | +39 (0) 2575631 | Tel:+852 2737-7200 |  |
|  |  |  | Fax:+852 2314-0061 |  |

