INTEGRATED CIRCUITS

DATA SHEET

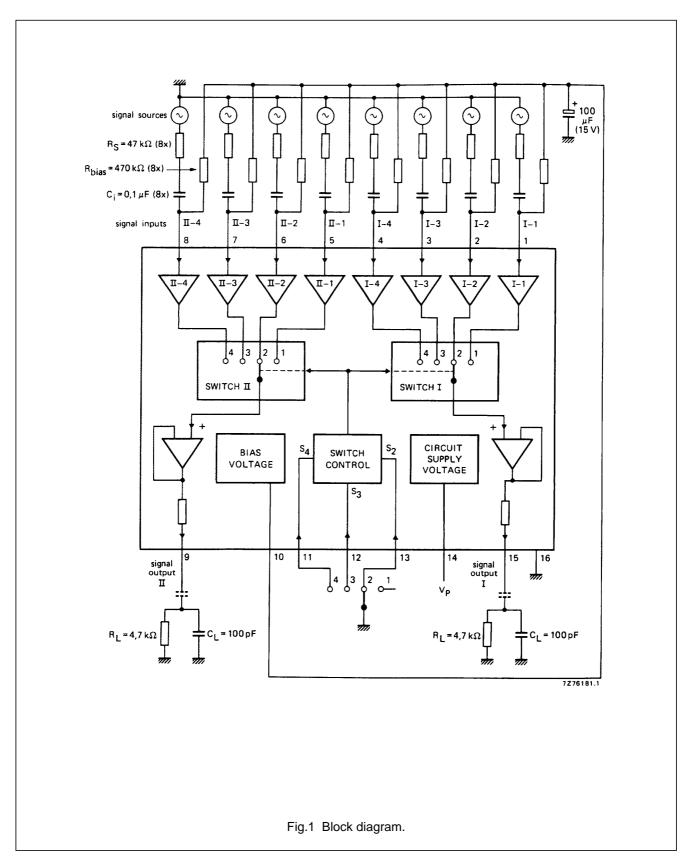
TDA1029Signal-sources switch

Product specification
File under Integrated Circuits, IC01

January 1980

TDA1029

The TDA1029 is a dual operational amplifier (connected as an impedance converter) each amplifier having 4 mutually switchable inputs which are protected by clamping diodes. The input currents are independent of switch position and the outputs are short-circuit protected.


The device is intended as an electronic two-channel signal-source switch in a.f. amplifiers.

QUICK REFERENCE DATA

Supply voltage range (pin 14)	V_{P}		6 to 23 V
Operating ambient temperature	T_{amb}	-3	30 to + 80 °C
Supply voltage (pin 14)	V_{P}	typ.	20 V
Current consumption	I ₁₄	typ.	3,5 mA
Maximum input signal handling (r.m.s. value)	V _{i(rms)}	typ.	6 V
Voltage gain	G_v	typ.	1
Total harmonic distortion	d_{tot}	typ.	0,01 %
Crosstalk	α	typ.	70 dB
Signal-to-noise ratio	S/N	typ.	120 dB

PACKAGE OUTLINE

16-lead DIL; plastic (SOT38); SOT38-1; 1996 July 18.

Signal-sources switch

RATINGS Limiting values in accordance with the Absolute Maximum \$5.000.	System (IEC 134)			
•	•		00.17	
Supply voltage (pin 14)	V _P	max.	23 V	
Input voltage (pins 1 to 8)	V _I	max.	V _P	
	-V ₁	max.	0,5 V	
Switch control voltage (pins 11, 12 and 13)	V_S		0 to 23 V	
Input current	±l _l	max.	20 mA	
Switch control current	$-I_S$	max.	50 mA	
Total power dissipation	P_{tot}	max.	800 mW	
Storage temperature	T _{stg}		–55 to + 150 °C	
Operating ambient temperature	T_{amb}		−30 to + 80 °C	
CHARACTERISTICS				
$V_P = 20 \text{ V}$; $T_{amb} = 25 ^{\circ}\text{C}$; unless otherwise specified				
Current consumption		typ.	3,5 mA	
without load; $I_9 = I_{15} = 0$	I ₁₄		2 to 5 mA	
Supply voltage range (pin 14)	V_P		6 to 23 V	
Signal inputs				
Input offset voltage				
of switched-on inputs		typ.	2 mV	
$R_S \le 1 \text{ k}\Omega$	V_{io}	<	10 mV	
Input offset current		typ.	20 nA	
of switched-on inputs	I _{io}	<	200 nA	
Input offset current				
of a switched-on input with respect to a		typ.	20 nA	
non-switched-on input of a channel	I _{io}	<	200 nA	
Input bias current	_	typ.	250 nA	
independent of switch position	l _i	<	950 nA	
Capacitance between adjacent inputs	С	typ.	0,5 pF	
D.C. input voltage range	V_{I}	71	3 to 19 V	
Supply voltage rejection ratio; $R_S \le 10 \text{ k}\Omega$	SVRR	typ.	100 μV/V	
Equivalent input noise voltage		96.	. σσ μετ, τ	
$R_S = 0$; $f = 20$ Hz to 20 kHz (r.m.s. value)	$V_{n(rms)}$	typ.	3,5 μV	
Equivalent input noise current	* n(rms)	-74.	ο,ο μ <i>ν</i>	
f = 20 Hz to 20 kHz (r.m.s. value)	1, ,	typ.	0,05 nA	
Crosstalk between a switched-on input	I _{n(rms)}	ιyp.	0,00 11A	
and a non-switched-on input;				
·	C.	tun	100 dD	
measured at the output at $R_S = 1 \text{ k}\Omega$; $f = 1 \text{ kHz}$	α	typ.	100 dB	

Signal-sources switch

TDA1029

Signal amplifier			
Voltage gain of a switched-on input			
at $I_9 = I_{15} = 0$; $R_L = \infty$	G_v	typ.	1
Current gain of a switched-on amplifier	G _i	typ.	10 ⁵
Signal outputs			
Output resistance (pins 9 and 15)	R_o	typ.	400 Ω
Output current capability at $V_P = 6$ to 23 V	$\pm I_9$; $\pm I_{15}$	typ.	5 mA
Frequency limit of the output voltage			
$V_{i(p-p)}$ = 1 V; R_S = 1 k Ω ; R_L = 10 M Ω ; C_L = 10 pF	f	typ.	1,3 MHz
Slew rate (unity gain); $\Delta V_{9-16}/\Delta t$; $\Delta V_{15-16}/\Delta t$			
$R_L = 10 \text{ M}\Omega; C_L = 10 \text{ pF}$	S	typ.	2 V/μs
Bias voltage			
D.C. output voltage	V	typ.	11 V ⁽¹⁾
	V ₁₀₋₁₆		10,2 to 11,8 V
Output resistance	R ₁₀₋₁₆	typ.	8,2 kΩ

Switch control

switched-on	interconnected	control voltages				
inputs	pins	V ₁₁₋₁₆	V ₁₂₋₁₆	V ₁₃₋₁₆		
I-1, II-1	1-15, 5-9	Н	Н	Н		
I-2, II-2	2-15, 6-9	Н	Н	L		
I-3, II-3	3-15, 7-9	Н	L	Н		
I-4, II-4	4-15, 8-9	L	Н	Н		
I-4, II-4	4-15, 8-9	L	L	Н		
I-4, II-4	4-15, 8-9	L	Н	L		
I-4, II-4	4-15, 8-9	L	L.	L L		
I-3, II-3	3-15, 7-9	Н	L	L		

In the case of offset control, an internal blocking circuit of the switch control ensures that not more than one input will be switched on at a time. In that case safe switching-through is obtained at $V_{SL} \le 1,5 \text{ V}$.

Signal-sources switch

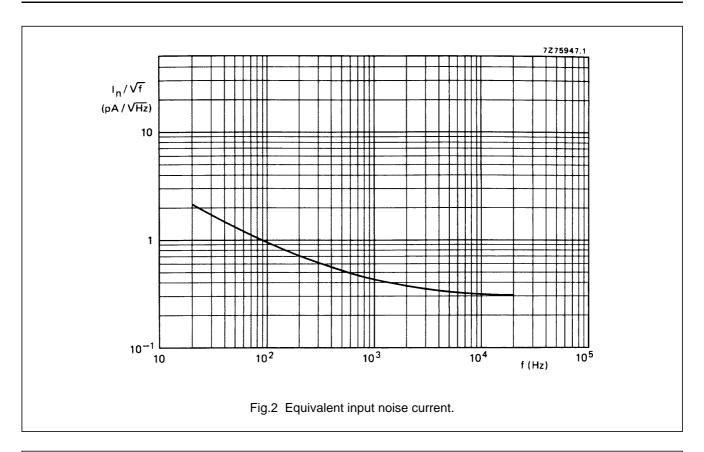
TDA1029

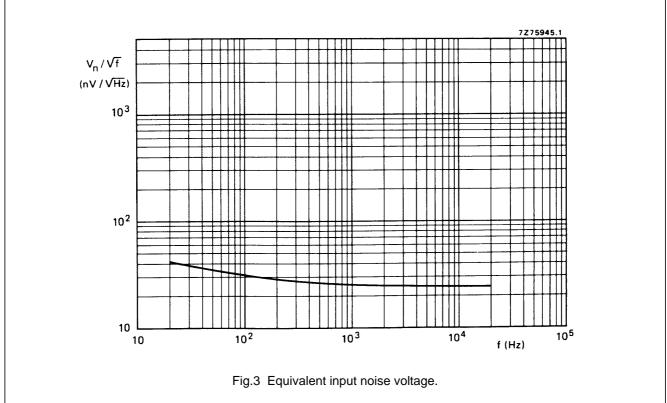
Required voltage			
HIGH	V_{SH}	>	3,3 $V^{(2)}$
LOW	VSL	<	2,1 V
Input current			
HIGH (leakage current)	I _{SH}	<	1 μΑ
LOW (control current)	-I _{SL}	<	250 μΑ

Notes

- 1. V_{10-16} is typically $0.5 \cdot V_{14-16} + 1.5 \cdot V_{BE}$.
- 2. Or control inputs open ($R_{11,12,13-16} > 33 \text{ M}\Omega$).

APPLICATION INFORMATION


 V_P = 20 V; T_{amb} = 25 °C; measured in Fig.1; R_S = 47 kΩ; C_i = 0,1 μF; R_{bias} = 470 kΩ; R_L = 47 kΩ; C_L = 100 pF (unless otherwise specified)


Voltage gain	G_{v}	typ.	-1,5	dB
Output voltage variation when switching	A\/ . A\/	typ.	10	mV
the inputs	$\Delta V_{9-16}; \Delta V_{15-16}$	<	100	mV
Total harmonic distortion				
over most of signal range (see Fig.4)	d_{tot}	typ.	0,01	%
$V_i = 5 V; f = 1 kHz$	d_{tot}	typ.	0,02	%
$V_i = 5 \text{ V}$; $f = 20 \text{ Hz}$ to 20 kHz	d_{tot}	typ.	0,03	%
Output signal handling				
d _{tot} = 0,1%; f = 1 kHz (r.m.s. value)	V	>	5,0	V
$u_{\text{tot}} = 0,170,1 = 1 \text{ KHZ (1.111.5. Value)}$	$V_{o(rms)}$	typ.	5,3	V
Noise output voltage (unweighted)				
f = 20 Hz to 20 kHz (r.m.s. value)	$V_{n(rms)}$	typ.	5	μV
Noise output voltage (weighted)				
f = 20 Hz to 20 kHz (in accordance with DIN 45405)	V_n	typ.	12	μV
Amplitude response				
$V_i = 5 \text{ V}$; $f = 20 \text{ Hz}$ to 20 kHz; $C_i = 0.22 \mu\text{F}$	$\Delta V_{9-16;} \Delta V_{15-16}$	<	0,1	dB ⁽¹⁾
Crosswalk between a switched-on input				
and a non-switched-on input;				
measured at the output at $f = 1 \text{ kHz}$	α	typ.	75	dB ⁽²⁾
Crosswalk between switched-on inputs				
and the outputs of the other channels	α	typ.	90	dB ⁽²⁾

Notes

- 1. The lower cut-off frequency depends on values of $R_{\mbox{\scriptsize bias}}$ and $C_{\mbox{\scriptsize i}}$
- 2. Depends on external circuitry and R_S. The value will be fixed mostly by capacitive crosstalk of the external components.

Signal-sources switch

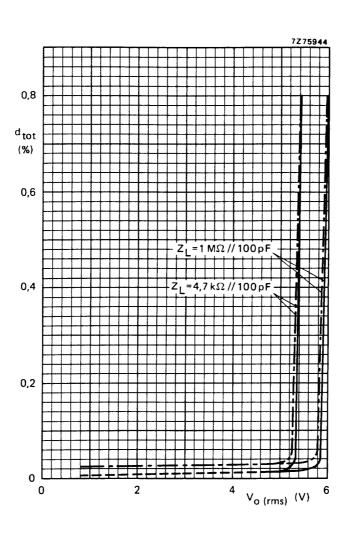


Fig.4 Total harmonic distortion as a function of r.m.s output voltage. — f = 1 kHz; — - — - f = 20 kHz.

Signal-sources switch

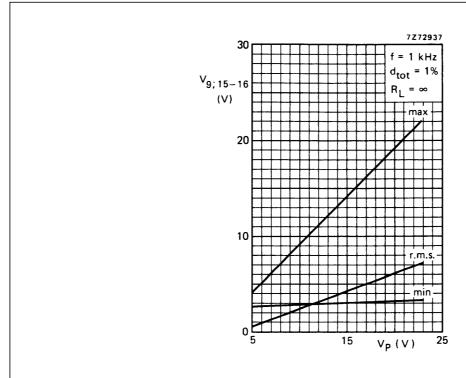
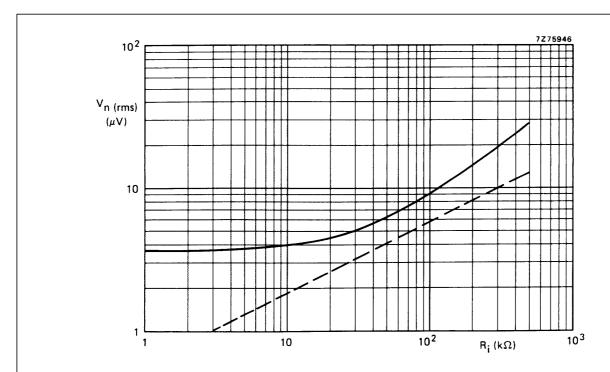
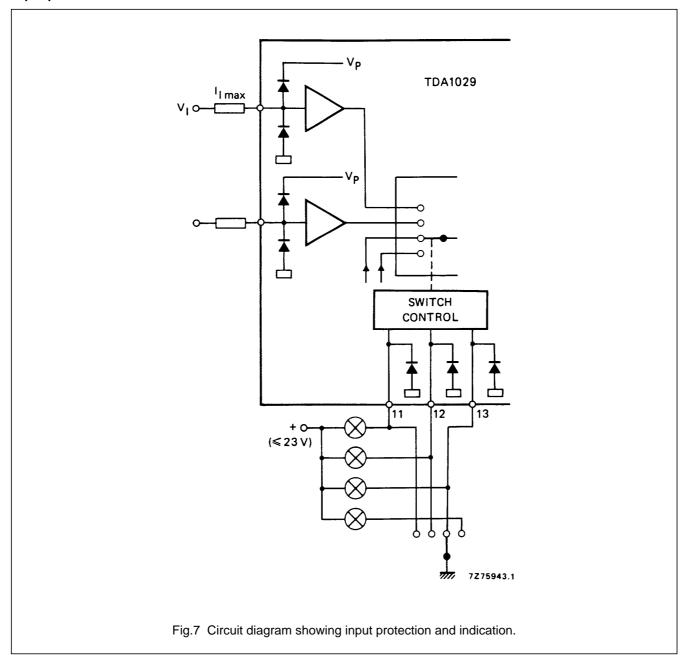


Fig.5 Output voltage as a function of supply voltage.



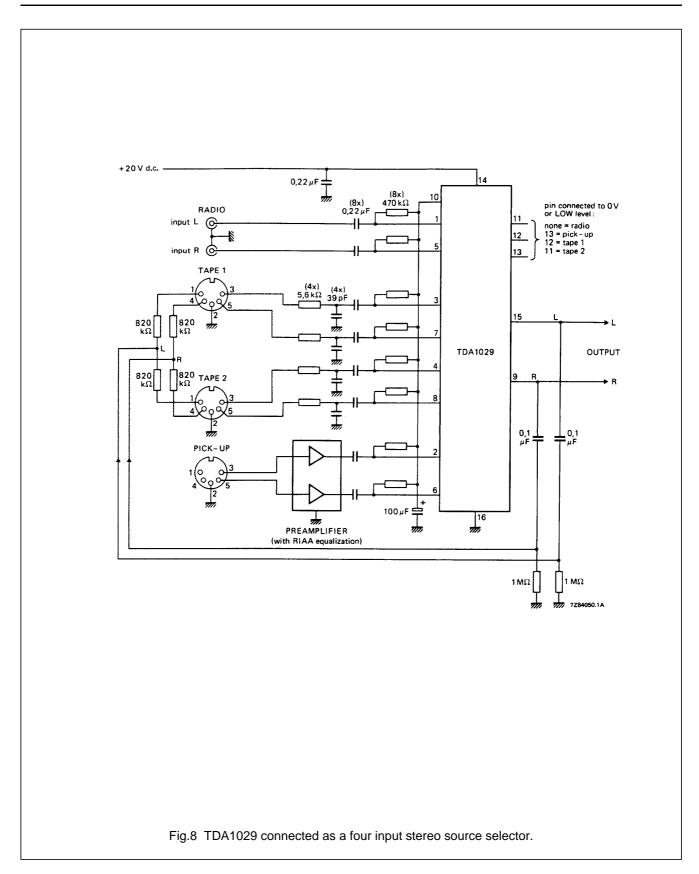

Fig.6 Noise output voltage as a function of input resistance; $G_V = 1$; f = 20 Hz to 20 kHz. — V_n (output); $---V_n$ (R_S).

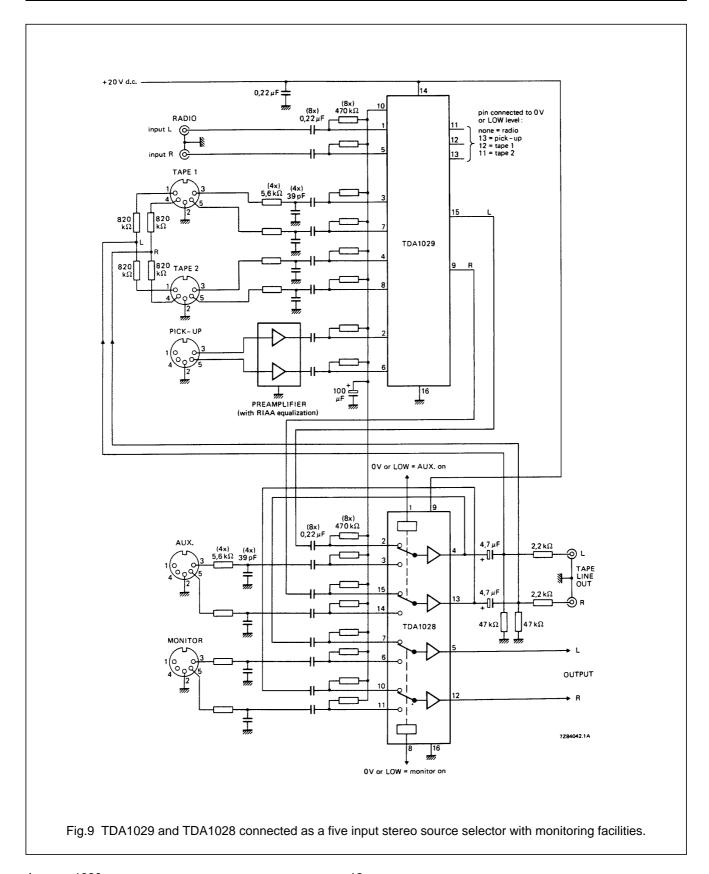
Signal-sources switch

TDA1029

APPLICATION NOTES

Input protection circuit and indication




Unused signal inputs

Any unused inputs must be connected to a d.c. (bias) voltage, which is within the d.c. input voltage range; e.g. unused inputs can be connected directly to pin 10.

Circuits with standby operation

The control inputs (pins 11, 12 and 13) are high-ohmic at $V_{SH} \le 20 \text{ V}$ ($I_{SH} \le 1 \text{ } \mu\text{A}$), as well as, when the supply voltage (pin 14) is switched off.

Signal-sources switch

TDA1029

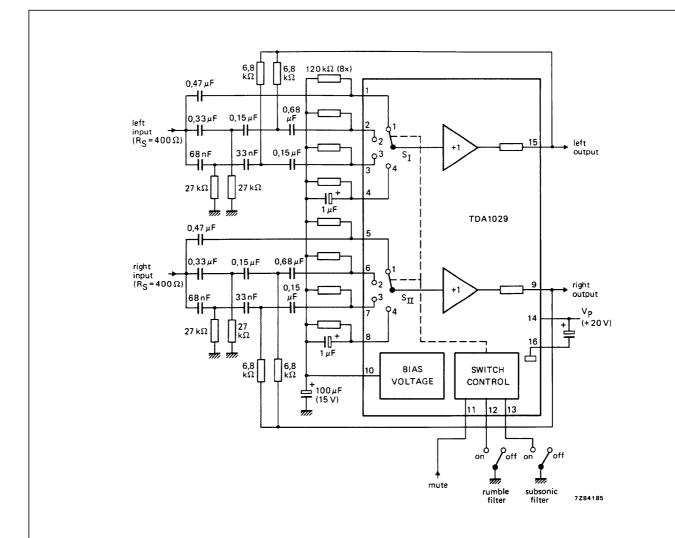
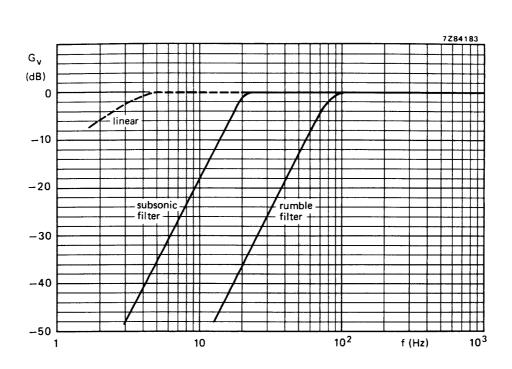
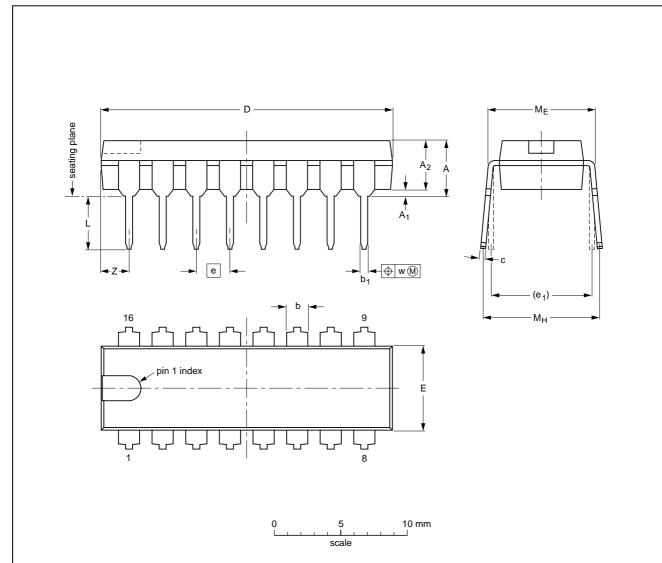


Fig.10 TDA1029 connected as a third-order active high-pass filter with Butterworth response and component values chosen according to the method proposed by Fjällbrant. It is a four-function circuit which can select mute, rumble filter, subsonic filter and linear response.

Switch control

function	V ₁₁₋₁₆	V ₁₂₋₁₆	V ₁₃₋₁₆
linear	Н	Н	Н
subsonic filter 'on'	Н	Н	L
rumble filter 'on'	Н	L	X
mute 'on'	L	X	X




Fig.11 Frequency response curves for the circuit of Fig.10.

TDA1029

PACKAGE OUTLINE

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

SOT38-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT38-1	050G09	MO-001AE			92-10-02 95-01-19

Signal-sources switch

TDA1029

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.