TOSHIBA TMP68HC000

16- BIT MICROPROCESSOR

TMP68HC000P-10/ TMP68HCO00P-12/ TMP68HCO000P-16
TMP68HCO00N-10/ TMP68HCOON-12/ TMP6SHCO00N-16
TMP68HC000Y-10/ TMP68SHC000Y-12/ TMP68HC000Y-16
TMP68SHCO00F-10/ TMP68HCO00F-12/ TMP68HCO00F-16
TMP68HCO000T-10*/ TMP68HC000T-12%/ TMP68HC000T*-16

Package type
P : plasticDIP
N : Shrank plastic DIP
Y : pingrid array (without stand-off) : TMP6SHC000 only
F : plastic QFP: TMP68HCO000 only
T : plasticleaded chi carrier

(* Under development)

1. INTRODUCTION
TMP68HCO000 are compatible with the Motorola MC68HC000.

L Low power Dissipation (TMPGS8HC000)

As show in the user programming model (Figure 1.1}, the TMP68HC000 offers 16/39-
bit registers and a 32-bit program counter. The first eight registers (D0~D7) are used as
data registers for byte (8-bit) , word (16-bit) , and long word (32-bit) operations. The
second set of seven registers (A0~A6) and the user stack pointer (USP) may be used as
software stack pointers and base address registers. In addition, the registers may be
used for word and long word operations. All of the 16 registers may be used as index
registers.

In supervisor mode, the upper byte of the status register and the supervisor stack

pointer (SSP) are also available to the programmer. These registers are shown in Figure
1.2.

The status register (IMigure 1.3) contains the interrupt mask (eight levels available)
as well as the condition codes: extend (X) , negative (N) , zero (%) , overflow (V) , and
carry (C) . Additional status bits indicate that the processor is in a trace (T) mode and in
a supervisor (8) or user state.

MPU00-1
B 9097249 0047422 7491 WA

TOSHIBA TMP68HC000

31 1615 87 0
: : 00
D1
: : D2 :
B e D3 Eight
: Joa Data
- D5 Registers
i)
D7

31 16 15 0
: AQ
Al

A2
A3 Seven

Tad Add'ress
A5 Registers

Ab

T T T
1

| A7 (USP) User Stack Pointer

31 Q
| |PC Program Counter

7 0

|:| CCR Status Register

Figure 1.1 User Programming Model

31 i6 15 0
: | a7 (s5P) supervisor stack Pointer

15 8 7 0
i CCR[sR Status Register

Figure 1.2 Supervisor Programming Model Supplement

User Byte
System Byte (Conditiorl\ Code Register)
]
[1T]
15 13 10 8 4 0
Carry
Overflow
Zero
Negative
Extend
Interrupt Mask
Supervisor State
Trace Mode

Figure 1.3 Status Register

MPU00-2
B 9097249 0047423 L2d

TOSHIBA TMP68HC000

1.1 DATATYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:
. Bits
® BCD Digits (4 bits)
. Bytes (8 bits)
. Words (16 bits)
. Long Words (32 bits)

In addition, operations on other data types such as memory addresses, status word
data, etc., are provided in the instruction set.
The 14 address modes, shown in Table 1.1, include six basic types:

° Register Direct

L Register Indirect

. Absolute

® Program Counter Relative
L Immediate

. Implied

MPU00-3
I 9097249 004?424 564 IN

TOSHIBA

v

Included in the register indirect addressing modes is the capability to do
postincrementing, predecrementing, offsetting, and indexing. The program counter

relative mode can also be modified via indexing and offsetting.

Table 1.1 Addressing Modes

Notes: Dn
An
Xn
SR
PC
SP
use
()
ds
d16
F#XXX

Addressing Modes Syntax

Register Direct Addressing

Data Register Direct Dn

Address Register Direct An
Absolute Data Addressing

Absolute Short Abs.W

Absolute Long Abs.L
Program Counter Relative Addressing

Relative with Offset d16 (PC)

Relative with Index Offset d8 (PC, Xn)
Register Indirect Addressing

Register Indirect (An)

Postincrement Register Indirect (An) +

Predecrement Register Indirect -(An)

Register Indirect with Offset d16 (An)

Indexed Register Indirect with Offset d8 (An, Xn)
Immediate Data Addressing

Immediate #xxx

Quick Immediate #1~#8
Implied Addressing

implied Register SR/USP/SSP/PC

Data Register
Address Register

Status Register

Program Counter

Stack Pointer

User Stack Pointer

Effective Address

8-Bit Offset (Displacement)
16-Bit Offset (Displacement)
Immediate Data

L L 1 [| I VO 1

Address or Data Register used as Index Register

MPUO00-4

B 9097249 0O4?u42s

4TO WM

TMP68HC000

TOSHIBA TMP68HC000

1.2 INSTRUCTION SET OVERVIEW

The TMP68HCO000 instruction set is shown in Table 1.2. Some additional
instructions are variations, or subsets, of these and they appear in Table 1.3. Special
emphasis has been given to the instruction set’s support of structured high-level
languages to facilitate ease of programming. Each instruction, with few exceptions,
operates on bytes, words, and long words and most instructions can use any of the 14
addressing modes. Combining instruction types, data types, and addressing modes, over
1000 useful instructions are provided. These instructions include signed and unsigned,

multiply and divide, “quick”arithmetic operations, BCD arithmetic, and expanded
operations (through traps).

Table 1.2 Instruction Set Summary (1/2)

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
AND Logical And
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
Bec Branch Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test
CHK Check Register Against Bounds
CLR Clear Operand
CMP Compare
DBcc Test Condition, Decrement and Branch
DIVS Signed Divide
DIVU Unsigned Divide
EOR Exclusive Or
EXG Exchange Registers
EXT Sign Extend
JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link Stack
LSL Logical Shift Left
LSR Logical Shift Right

MPUOO-5

B 3097249 0047426 337 N

TOSHIBA

TMP&8HC000

Table 1.2 Instruction Set Summary (2/2)

Mnemonic Description
MOVE Move
MOVEM Move Multiple Registers
MOVEP Move Peripheral Data
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NOP No Operation
NOT One’s Complement
OR Logical OR
PEA Push Effective Address
RESET Reset External Devices
ROL Rotate Left without Extend
ROR Rotate Right without Extend
ROXL Rotate Left with Extend
ROXR Rotate Right with Extend
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
STOP Stop
suUB Subtract
SWAP Swap Data Register Halves
TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST Test
UNLK Unlink

MPUO0O0-6

H 9097249 0047427 273 1N

TOSHIBA

TMP68HC000

Table 1.3 Variations of Instruction Types

Instruction Variation Description
Type
ADD ADD Add
ADDA Add Address
ADDQ Add Quick
ADDI Add immediate
ADDX Add with Extend
AND AND Logical And
ANDI AND Immediate
ANDI to CCR AND Immediate to Condition Codes
ANDI to SR AND Immediate to Status Register
CMmP CMP Compare
CMPA Compare Address
CMPM Compare Memory
CMPI Compare Immediate
EOR EOR Exclusive OR
EORI Exclusive OR Immediate
EORIto CCR Exclusive OR Immediate to Condition Codes
EORI to SR Exclusive OR Immediate to Status Register
MOVE MOVE Move
MOVEA Move Address
MOVEQ Move Quick
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE to CCR Move to Condition Codes
MOVE USP Maove User Stack Pointer
NEG NEG Negate
NEGX Negate with Extend
OR OR Logical OR
ORI OR Immediate
ORIl to CCR OR Immediate to Condition Codes
ORI to SR OR Immediate to Status Register
SUB SuB Subtract
SUBA Subtract Address
SuBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend

MPU00-7

M 9097249 004?428 LOT W

TOSHIBA , TMP68HC000

2.

21

2.2

DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the
TMP6SHC000.

OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a
long word equals 32 bits. The operand size for each instruction is either explicitly
encoded in the instruction or implicitly defined by the instruction operation. Implicit
instructions support some subset of all three sizes.

DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven
address registers together with the stack pointers support address operadnds of 32 bits.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operadns occupy the low order 8 bits, word
operands the low order 16 bits, and long word operands the entire 32 bits. The least
significant bit is addressed as bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the
appropriate low order portion is changed; the remaining high order portion is neither
used nor changed.

2.2.2 Address Registers

2.3

Each address register and the stack pointer is 32 bits wide and holds a full 32-bit
address. Address registers do not support the sized operands. Therefore, when an
address register is used as a source operand, either the low order word or the entire long
word operand is used depending upon the operation size. When an address register is
used as the destination operand, the entire register is affected regardless of the
operation size. If the operation size is word, any other operands are sign extended to 32
bits before the operation is performed.

DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address
the same as the word, as shown in Figure 2.1. The low order byte has an odd address
that is one count higher than the word address. Instructions and multibyte data are
accessed only on word (even byte) boundaries. If a long word datum is located at address
n (n even) , then the second word of that datum is located at addressn+2.

MPUO00-8
B 9097249 004?429 OubL WM

TOSHIBA

TMP68HCO000

2

15 8 7 0
Word 000000
Byte 000000 I Byte 000001
Word 000002
Byte 000002 | Byte 000003
A | z
Word FFFFFE
Byte FFFFFE | Byte FFFFFF

Figure 2.1 Word Organization in Memory

The data types supported by the TMP68HC000 are: bit data, integer data of 8, 16, or
32 bits, 32-bit addresses and binary coded decimal data. Fach of these data types is put
in memory, as shown in Figure 2.2. The numbers indicate the order in which the data

accessed from the processor.

MPU00-9

B 9097249 004?430 &LS N

TOSHIBA

TMP68HCO000

Bit Data
1 Byte =8 Bits

7 6 5 4 3 2 1 0

CT T T T T T 11

Integer Data
1 Byte = 8 Bits

10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11

MSB Byte 0 LSB Byte 1

Byte 2 Byte 3

1 Word = 16 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MSB Word 0 LSB

Word 1

Word 2

1 Long Word = 32 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Addresses
1Address = 32 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ©

MsSB Address0 HighOrder

Low Order LSB
............. OIS 1 e
............. AAERSS 2 e———r oo

MSB = Most Significant Bit LSB = Least Significant BIT

Decimal Data
2 Binary Coded Decimal Digits = 1 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MsD BCDOQ BCD1 isSD BCD2 BCD3

BCD4 BCDS BCD6 BCD7

MSD = Most Significant Digit LSD = Least Significant Digit

PFigure 2.2 Memory Data Organization

MPU0O-10
B 9097249 004?431 7Ty A

TOSHIBA TMP&8HCO000

2.4

2.5

2.6

2.7

ADDRESSING

Instructions for the TMP68HCO000 contain two kinds of information: the type of
function to be performed and the location of the operand(s) on which to perform that
function. The methods used to locate (address) the operand(s) are explained in the
following paragraphs.

Instructions specify an operand location in one of three ways:

Register Specification — the number of the register is given in the register field
of their instruction.

Effective Address — useof the different effective addressing modes.

Implicit Reference — the definition of certain instructions implies the use of
specific registers.

INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2.3. The length
of the instruction and the operation to be performed is specified by the first word of the
instruction which is called the operation word. The remaining words further specify the
operands. These words are either immediate operands or extensions to the effective
address mode specified in the operation word.

15 0
Operation Word (First Word Specifies Operation and Modes)
Immediate Operand (If Any, One or Two Words)

Source Effective Address Extension (If Any, One or Two Words)
Destination Effective Address Extension (If Any, One or Two Words)

Figure 2.3 Instruction Operation Word General Format

PROGRAM/DATA REFERENCES

The TMP68HCO000 separates memory references into two classes: program references
and data references. Program references, as the name implies, are references to that
section of memory that contains the program being executed. Data references refer to
that section of memory that contains data. Operand reads are from the data space
except in the case of the program counter relative addressing mode. All operand writes
are to the data space.

REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

MPUQ0-11
B 9097249 0047432 L30 MW

TOSHIBA TMP68HCO000

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address
field in the operation word. For example, Figure 2.4 shows the general format of the
single-effective-address instruction operation word. The effective address is composed of
two 3-bit fields: the mode field and the register field. The Value in the mode field selects
the different address modes. The register field contains the number of a register.

The effective address field may require additional information to fully specify the
operand. This additional information, called the effective address extension, is
contained in the following word or words and is considered part of the instruction, as
shown in Figure 2.3. The effective address modes are grouped into three categories:
register direct, memory addressing, and special.

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lexlxlxlx|x|x|xlxlx[Mode Register|
L 1

[
Effective Address

Figure 2.4 Single Effective Address Instruction Operation Word
2.8.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of 16
multifunction registers.

2.8.1.1 Data Register Direct

The operand is in the data register specified by the effective address register field.
2.8.1.2 Address Register Direct

The operand is in the address register specified by the effective address register field.
2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide
the specific address of the operand.

2.8.2.1 Address Register Indirect

The address of the operand is in the address register specified by the register field.
The reference is classified as a data reference with the exception of the jump and jump-
to-subroutine instructions.

2.8.2.2 Address Register Indirect with Postincrement

The address of the operand is in the address register specified by the register field.
After the operand address is used, it is incremented by one, two, or four depending upon
whehter the size of the operand is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is incremented by two rather than
one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

MPU00-12
B 9097249 0047433 577 1N

TOSHIBA TMP6E8HCO000

2.8.2.3 Address Register Indirect with Predecrement

The address of the operand is in the address register specified by the register field.
Before the operand address is used, it is decremented by one, two, or four depending
upon whether the operand size is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is decremented by two rather than

one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

2.8.2.4 Address Register Indirect with Displacement

This addressing mode requires one word of extension. The address of the operand is
the sum of the address in the address register and the sign-extended 16-bit displacement
integer in the extension word. The reference is classified as a data reference with the
exception of the jump and jump-to-subroutine instructions.

2.8.2.5 Address Register Indirect with Index

This addressing mode requires one word of extension. The address of the operand is
the sum of the address in the address register, the sing-extended displacement integer in
the low order eight bits of the extension word, and the contents of the index register.
The reference is classified as a data reference with the exception of the jump and jump-
to-subroutine instructions.

2.8.3 Special Address Modes

The special address modes use the effective address register field to specify the special
addressing mode instead of a register number.

2.8.3.1 Absolute Short Address

This addressing mode requires one word of extension. The address of the operand is
the extension word. The 16-bit address is sign extended before it is used. The reference
is classified as a data reference with the exception of the jump and jump-to-subroutine
instructions.

2.8.3.2 Absolute Long Address

This addressing mode requires two words of extension. The address of the operand is
developed by the concatenation of the extension words. The high order part of the
address is the first extension word; the low order part of the address is the second
extension word. The reference is classified as a data reference with the exception of the
jump and jump-to-subroutine instruction.

2.8.3.3 Program Counter with Displacement

This addressing mode requires one word of extension. The address of the operand is
the sum of the address in the program counter and the sign-extended 16-bit
displacement integer in the extension word. The value in the program counter is the
address of the extension word. The reference is classified as a program reference.

MPU00-13
B 9097249 0047434 403 WA

TOSHIBA TMP68HC000

© 2.8.3.4 Program Counter with Index

This addressing mode requires one word of extension. The address is the sum of the
address in the program counter, the sign-extended displacement integer in the lower
eight bits of the extension word, and the contents of the index register. The value in the
program counter is the address of the extension word. This reference is classified as a
program reference.

2.8.3.5 Immediate Data

This addressing mode requires either one or two words of extension depending on the
size of the operation.

Byte Operation : operand is low order byte of extension word
Word Operation . operand is extension word
Long Word Operation : operand is in the two extension words, high order 16 bits

are in the first extension word, low order 16 bits are in the
second extension word

2.8.3.6 Implicit Reference

Some instructions make implicit reference to the program counter (PC) , the system
stack pointer (SP), the supervisor stack pointer (SSP) , the user stack pointer (USP), or
the status register (SR) . A selected set of instructions may reference the status register
by means of the effective address field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR
EORIto SR
ORI to CCR
ORI to SR
MOVE to CCR
MOVE to SR
MOVE from SR

MPUQ0-14
H 9097249 004?435 34T IN

TOSHIBA TMP68HCO000

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

Table 2.1 is a summary of the effective addressing modes discussed in the previous

paragraphs.
Table 2.1 Effective Address Encoding Summary
Addressing Mode Mode Register

Data Register Direct 000 Register Number
Address Register Direct 001 Register Number
Address Register Indirect 010 Register Number
Add'ress Register Indirect with 011 Register Number
Postincrement

Address Register Indirect with 100 Register Number
Predecrement

Afidress Register Indirect with 101 Register Number
Displacement

Address Register indirect with Index 110 Register Number
Absolute Short m 000
Absolute Long 111 001
Program Counter with Dispiacement 11 010
Program Counter with index 111 011
Immediate 111 100

2.10 SYSTEM STACK

The system stack is used implicitly by many instructions; user stacks and queues may
be created and maintained through the addressing modes. Address register seven (A7)
is the system stack pointer (SP). The system stack pointer is either the supervisor stack
pointer (SSP) or the user stack pointer (USP) , depending on the state of the S bit in the
status register. If the S bit indicates supervisor state, SSP is the active system stack
pointer and the USP cannot be referenced as an address register. If the S bit indicates
user state, the USP is the active system stack pointer, and the SSP cannot be referenced.
Each system stack fills from high memory to low memory.

MPU00-15
B 9097249 004?43k 28L WA

TOSHIBA TMP68HC000

3.

3.1

INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the TMP68HC000
instruction set. The instructions form a set of tools that include all the machine
functions to perform the following operations:

Data Movement
Integer Arithmetic
Logical

Shift and Rotate

Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined with the flexible addressing
modes described previously provide a very flexible base for program development.

DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move
(MOVE) instruction. The move instruction and the effective addressing modes allow
both address and data manipulation. Data move instructions allow byte, word, and long
word operands to be transferred from memory to memory, memory to register, register
to memory, and register to register. Address move instructions allow word and long
word operand transfers and ensure that only legal address manipulations are executed.
In addition to the general move instruction there are several special data movement
instructions: move multiple registers (MOVEM) , move peripheral data (MOVEP) ,
exchange registers (EXG) , load effective address (LEA) , push effective address (PEA),
link stack (LINK) , unlink stack (UNLK) , and move quick (MOVEQ) . Table 3.1is a
summary of the data movement operations.

MPU00-16
B 9097249 004?437 112 N

TOSHIBA TMP68HC000

3.2

Table 3.1 Data Movement Operations

Instruction Operand Size Operation
EXG 32 Xxe>Xy
LEA 32 EA—ARN
An— - (SP)
LINK - SP—An
SP + displacement —SP
MOVE 8,16,32 5 —>d
(EA)—>An,Dn
MOVEM 16,32 An,Dn —(EA)
(EA)>Dn
P
MOVE 16,32 Dn—(EA)
MOVEQ 8 #xxx—Dn
PEA 32 EA— - (SP)
SWAP 32 Dn[31:16]«<Dn[15:0]
An-Sp .
UNLK - (SP) + AN
Notes: s = source -{) = indirect with predecrement
d = destination ()+ = indirect with postincrement
[1 = bitnumber #xxx = immediate data
INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD) , subtract
(SUB) , multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP) , clear
(CLR) , and negate (NEG) . The add and subtract instructions are available for both
address and data operations, with data operations accepting all operand sizes. Address
operations are limited to legal address size operands (16 or 32 bits) . Data, address, and
memory compare operations are also available. The clear and negate instructions may
be used on all sizes of data operands.

The multiply and divide operations are available for signed and unsigned operands
using word multiply to produce a long word product, and a long word dividend with
word divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended
instructions. These instructions are: add extended (ADDX) , subtract extended (SUBX),
sign extend (EXT) , and negate binary with extend (NEGX) .

A test operand (TST) instruction that will set the condition codes as a result of a
compare of the operand with zero is also available. Test and set (TAS) is a
synchronization instruction useful in multiprocessor systems. Table 3.2 is a summary of
the integer arithmetic operations.

MPU00-17
B 9097249 004?438 059 MW

TOSHIBA

TMP68HC000

Table 3.2 Integer Arithmetic Operations

Instruction Operand Size Operation
8,16,32 Dn +(EA) »Dn
(EA) + Dn —>(EA)
ADD (EA) + #xxx —>(EA)
16,32 An + (EA) AN
8,16,32 Dx + Dy + X =Dx
ADDX 16,32 —(AX) + - (Ay) + X (A%
CLR 8,16,32 0 —(EA)
8,16,32 Dn - (EA)
(EA) - #xxx
cmP (AX) + ~ (Ay) +
16,32 An - (EA)
DIVS 32+16 Dn + {EA)—Dn
Divu 32+16 Dn + (EA)—Dn
EXT 816 {Dn)g—Dnig
1632 (Dn)1—Dn32
MULS 16x 1632 Dn x (EA) —=Dn
MULU 16 X 16532 Dn x (EA) —»Dn
NEG 8,16,32 0 - (EA}—(EA)
NEGX 8,16,32 0 - (EA) - X—(EA)
8,16,32 Dn ~ (EA) -Dn
SUB (EA) - Dn —(EA)
(EA) — #xxx —(EA)
16,32 An - {EA) AN
Dx - Dy = X =Dx
SUBX 8,16,32 —(AX) - - (Ay) = X —(AX)
TAS 8 (EA) - 0,1EA[7]
TST 8,16,32 (EA) -0
Notes: [] bit number

()+

F#XXX

indirect with predecrement
indirect with postincrement
immediate data

MPUOO-18
BN 9097249 0047439

T35 IR

TOSHIBA TMP68HC000

3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of
integer data operands. A similar set of immediate instructions (ANDI, ORI, and EQRI)
provide these logical operations with all sizes of immediate data. Table 3.3 is a
summary of the logical operations.

Table 3.3 Logical Operations

Instruction Operand Size Operation
DnA(EA)—=Dn
AND 8, 16, 32 (EA)ADn—(EA)
(EA)A#xxx—>(EA)
Dny/(EA)—Dn
OR 8, 16, 32 (EA)\/Dn—(EA)
(EA)#xxx—(EA)
(EA)YBDy—(EA)
EOR 8,16, 32 (EA)® #xxx—(EA)
NOT 8, 16, 32 ~(EA)—>(EA)
Notes: ~ = invert V = logical OR
#xxx = immediate data @ = logical exclusive OR
A = logical AND

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR
and ASL and logical shift instructions LSR and LSL. The rotate instructions (with and
without extend) available are ROXR, ROXL, ROR, and ROL. All shift and rotate
operations can be performed in either registers or memory. Register shifts and rotates
support all operand sizes and allow a shift count specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts
or rotates.

MPU00-19
B 9097249 0047440 707 MM

TOSHIBA TMP68HCO000

Table3.4 Shift and Rotate Operations

Instruction Operand Size Operation

ASL - 8, 16, 32 XIC J«{ ~——]< 0

ASR 8, 16, 32 X/C
LsL 8, 16, 32 XIC J«] ~——]< 0

LSR 8, 16, 32 0 »[—— [xc]
ROL 8, 16, 32

ROR 8, 16, 32
ROXL 8, 16, 32 < T—{x
ROXR 8, 16, 32 Cx ——=1>c]

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instruction: bit
test (BTST) , bit test and set (BSET), bit test and ciear (BCLR) , and bit test and change
(BCHG) . Table 3.5 is a summary of the bit manipulation operations. (Z is bit 2 of the
status register.)

Table 3.5 Bit Manipulation Operations

Instruction Operand Size Operation
BTST 8, 32 ~bit of (EA) »Z
e o7 b
0 oo
BHS 8 2 ok of (EA) Jbitof EA
Note: ~=invert
MPUQ0-20

B 9097249 004744l b43 HE

TOSHIBA TM68HC000

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are
accomplished using the following instructions: add decimal with extend (ABCD) ,
subtract decimal with extend (SBCD) , and negate decimal with extend (NBCD) . Table
3.6 is a summary of the binary coded decimal operations.

Table 3.6 Binary Coded Decimal Operations

Instruction Operand Size Operation

Dx1g + Dyqg + X —Dx

ABCD 8
- (Ax)19+ = {Ay)1g+ X —(Ax)
Dx10 ~Dy19 - X —Dx

SBCD 8
= {(Ax)10~ - (Ay)10 - X —(Ax)

NBCD 8 0—(EA)10—X—)(EA)

Note: -()=indirectwith predecrement

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and
unconditional branch instructions and return instructions. These instructions are
summarized in Table 3.7.

The conditional instructions provide setting and branching for the following

conditions:
CC carryclear LS low or same
CS carry set LT lessthan
EQ equal MI minus
F nevertrue NE not equal
GE greater or equal PL plus
GT greater than T alwaystrue
HI high VC nooverflow
LE lessorequal VS overflow

MPU00-21

B 9097249 0047442 58T WE

TOSHIBA

TM68HC000

Table 3.7 Program Control Operations

Instruction Operation
Conditional Branch Conditionally (14 Conditions)
Bce 8-and 16-Bit Displacement
DBcc Test Condition, Decrement, and Branch
16-Bit Displacement
Scc Set Byte Conditionally (16 Conditions)

Unconditional

BRA Branch Always
8-and 16-Bit Displacement
BSR Branch to Subroutine
8-and 16-Bit Displacement
JMP Jump
ISR Jump to Subroutine
Reterns
RTR Return and Restore Condition Codes
RTS Return from Subroutine

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the status register. These
instructions are summarized in Table 3.8.

Table 3.8 System Control Operations

Instruction Operation
Privileged
ANDI to SR Logical AND to Status Register
EORIto SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register
MOVE USP Move User Stack Pointer
ORI to SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Exception
STOP Stop Program Execution

Trap Generating
CHK

TRAP

TRAPV

Check Data Register Against Upper Bounds
Trap
Trap on Overflow

Status Register
ANDI to CCR
EORI to CCR
MOVE EA to CCR
MOVE SR to EA
ORlto CCR

Logical AND to Condition Codes
Logical EOR to Condition Codes
Load New Condition Codes
Store Status Register

Logical OR to Condition Codes

MPU00-22

B 5097249 0047443 4lb I

TOSHIBA TMP68HC000

4. SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion
of bus operation during the various machine cycles and operations is also given.

Note : The terms “assertion” and “negation” will be used extensively. This is done to
avoid confusion when dealing with a mixture of “active-low” and “active-high”
signals. The term assert or assertion is used to indicate that a signal is active
or true, independent of whether that level is represented by a high or low

voltage. The term negate or negation is used to indicate that a signal is
inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output signals can be functionally organized into the groups and the
pin assignments is shown in Figure 4.1. The following paragraphs provide a brief
description of the signals and a reference (if applicable) to olher paragraphs that contain
more detail about the function being performed.

(68 Pin PGA)
/

(64 Pin DIP, 64 Pin SDIP)

—
K OCNONONONOEONS) D4 C1e 64 DS
N.C. FC2 FCO A1 A3 A4 A6 A7 AJ NC D3 2 63 D6

s Q00000 02 =3 62 07
BERRIPLO FC1 N.C. A2 A5 AB ATD ATl Al4 014 61 [~ D8

HI O O Do 5 60 = D9
E 1PL2 PLT AT3 A12 Al AS s 59 D10

G ubs .7 58 ID11
VMA VPA Al5 Al7 bs s 57 (D12

F RAW T g 56 D13
HALT RESET A18 A19 DTACK T 10 55 D14

E BG T 11 54 D15
CLK GND VCC A20 BGACK 12 53 IGND

D BRC 13 52 [JAz3
BR vCC ’ GND A1 Vee C14 51 JA22

C Q %/jw K 15 50 =2 A21
BGACK BG,-R/W D13 A23 A22 GND 16 49 I Ve
8| O ONORORONONONS) HALT 17 48 3 A20
DTack |LBS UDS D0 D3 D6 D9 DI DI4 DIS RESET 18 47 =3 A19
A O OO O O VA £ 19 46 [A18
N.C [AS Dt D2 D4 D5 D7 D8 Di0 Di2)/ EEZO 45 3 A17
VPA 21 44 3 A16

1 2 3 a S [7 8 9 10 EERREZZ 43 :A15
(BOTTOM VIEW) P2 23 42 a1

PLT] 24 41 1A13

PO T 25 40 F A2

FC2 T 26 39 Ban

FC1 T 27 38 FIA10

FCO 28 37 a9

A1 329 36 D A8

A2 130 35 A7

A3 334 34 EAG

A4 32 33 A5

(TOP VIEW)

Figure 4.1 Inputand Output Signals Pin Assingments (1/2)

MPU00-23

M 9097249 0047444 352 mE

TOSHIBA TMP68HC000

(64 pin QFP)

B o-NmY

\Dg}mo'— NI WO OO e

clapiKbdooonoonosononnod

A

BTACK =[5, 333;3:!: D15
__ BG T BT GND
BGACK =T T A23
vee T A21
GND &—T— F—T— A20
HALT =15 = A19
RESET = T A18
VMA = FTT1 A17
E FT= A16
VPATH O Fe= A15
BERR :D:K \ 1922):1:1:1 Ald

NoE 0081232833 T

&&Emw“ LLd

(TOP VIEW)

(68 pin PLCC) * Under Development

9 168

DTACK [J10 nD13
EEE O noia
BGACK [D15
BR O 1 GND
vee O [GND
ck g 0 A23
GND § 0 A22
GND { 0 A21
N.C. O g Vee
HALT { 0 A20
RESET (] 1A19
VWA O [A18
EQ DAY7
VPA (] hA16
BERR {] b A1S
iPL2 NA14
iPLi 026 450 A13

27 43

e e O ww e 0 o S

OnQgHo

(O N — O — N
EESIVEV R R € € R R i -4
o w uw =

(TOP VIEW)

-

g«

4.1 Inputand Qutput Signals Pin Assignments (2/2)

MPU00-24

B 9097249 0047445 299 1B

TOSHIBA TMP68HC000

4.1.1 Address Bus (A1~A23)

This 23-bit, unidirectional, three-state bus is capable of addressing 8 megawords of
data. It provides the address for bus operation during all cycles except interrupt cycles.
During interrupt cycles, address lines A1, AZ, and A3 provide information about what
level interrupt is being serviced while address lines Ad ~ A23 are all set to a logic high.

4.1.2 Data Bus (D0~D15)
This 16-bit, bidirectional, three-state bus is the general purpose data path. It can

transfer and accept data in either word or byte length. During an interrput
acknowledge cycle, the external device supplies the vector number on data lines DO~D?7.

4.1.3 Asynchronous Bus Control
Asynchronous data transfers are handled using the following control signals; address

strobe, read/write, upper and lower data strobes, and data transfer acknowledge. These
signals are explained in the following paragraphs.

4.1.3.1 Address Strobe (AS)

This signal indicates that there is a valid address on the address bus.
4.1.3.2 Read/Write (R/W)
This signal defines the data bus transfer as a read or write cycle. The R/W signal also
works in conjunction with the data strobes as explained in the following paragraph.
4.1.3.3 Upper and Lower Data Storobe (UDS, LDS)
These signals control the flow of data on the data bus, as shown in Table 4.1. When

the R/W line is high, the processor will read from the data bus as indicated. When the
R/W line is low, the processor will write to the data bus as shown.

MPU00-25
M 5097249 004744b 125 HN

TOSHIBA TMP68HC000

Table 4.1 Data Strobe Control of Data Bus

uDs DS RW D8~D15 DO~D7

High High - No Valid Data No Valid Data

Low Low High Valid Data Bits Valid Data Bits
8~15 0~7

High [Low High No Valid Data Valid Data Bits

0~7

Low High High Valid Data Bits No Valid Data
8~15

Low Low Low Valid Data Bits Valid Data Bits
8~15 0~7

High Low Low Valid Data Bits Valid Data Bits
0~7% 0~7

Low High Low Valid Data Bits Valid Data Bits
8~15 8~15*

* : These conditions are result of current implementation and may not appear
on future devices.

4.1.3.4 Data Transfer Acknowledge (DTACK)

This input indicates that the data transfer is completed. When the processor
recognizes DTACK during a read cycle, data is latched and the bus cycle terminated.
When DTACK is recognized during a write cycle, the bus cycle is terminated. (Refer to
“4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION”).

4.1.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowledge, form a bus
arbitration circuit to determine which device will be bus master device.

4.1.4.1 Bus Request (BR)

This input is wire ORed with all other devices that could be bus masters. This input
indicates to the processor that some other device desires to become the bus master.

4.1.4.2 BusGrant (BG)

This output indicates to all other potential bus master devices that the processor will
release bus control at the end of the current bus cycle.

4.1.4.3 Bus Grant Acknowledge (BGACK)

This input indicates that some other device has become the bus master.
This signal should not be asserted until the following four conditions are met:

1. abus grant has been received
9. address strobe is inactive which indicates that the microprocessor is not using the bus

MPU00-26
B 9097249 004?447 Obl WE

TOSHIBA TMP68HC000

3. data transfer acknowledge is inactive which indicates that neither memory nor
peripherals are using the bus

4. bus grant acknowledge is inactive which indicates that no other device is still
claiming bus mastership

4.1.5 Interrupt Control (IPLO, IPLT, IPL?)

These input pins indicate the encoded priority level of the device requesting an
interrupt. Level seven is the highest priority while level zero indicates that no
interrupts are requested. Level seven cannot be masked. The least significant bit is
given in IPLO and the most significant bit is contained in IPL2. These lines must remain
stable until the processor signals interrupt acknowledge (FCO~FC2 are all high) to
insure that the interrupt is recognized.

4.1.6 System Control

The system control inputs are used to either reset or halt the processor and to indicate
to the processor that bus errors have occurred. The three system control inputs are
explained in the following paragraphs.

4.1.6.1 BusError (BERR)

This input informs the processor that these is a problem with the cycle currently
being executed. Problems may be a result of:

1. nonresponding devices

2. interrupt vector number acquisition failure

3. illegal access request as determined by a memory management unit
4. other application dependent errors

The bus error signal interacts with the halt signal to determine if the current bus
cycle should be reexecuted or if exception processing should be performed.

Refer to “4.2.4 Bus Error and Halt Operation” for additional information about the
interaction of the bus error and halt signals.

4.1.6.2 Reset (RESET)

This bidirectional signal line acts to reset (start a system initialization sequence) the
processor in response to an external reset signal. An internally generated reset (result
of a RESET instruction) causes all external devices to be reset and the internal state of
the processor is not affected. A total system reset (processor and external devices) is the
result of external HALT and RESET signals applied at the same time. Refer to “4.2.5
Reset Operation” for further information.

4.1.6.3 Halt (HALT)

When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus cycle. When the procesor has been

MPUO00-27
B 9097249 004744s TT: mE

TOSHIBA TMP68HC000

halted using this input, all control signals are inactive and all three-state lines are put
in their high-impedance state (refer to Table 4.3) . Refer to “4.2.4 Bus Error and Halt
Operation” for additional information about the interaction between the HALT and bus

error signals.

When the processor has stopped executing instructions, such as in a double bus fault
condition (refer to “4.2.4.4 Double Bus Faults”) , the HALT line is driven by the
processor to indicate to external devices that the processor has stopped.

4.1.7 6800 Peripheral Control

These control signals are used to allow the interfacing of synchronous 6800
peripheral devices with the asynchronous TMP68HC000. These signals are explained in
the following paragraphs.

4.1.7.1 Enable (E)

This signal is the standard enable signal common to all 6800 type peripheral devices.
The period for this output is ten TMP68HC000 clock periods (six clocks low, four clocks
high) . Enable is generated by an internal ring counter which may come up in any state
(i.e., at power on, it is impossible to guarantee phase relationship of E to CLK) . Eisa
free-running clock and runs regardless of the state of the bus on the MPU.

4.1.7.2 Valid Peripheral Address (VPA)

This input indicates that the device or region addressed is an 6800 Family device and
that data transfer should be synchronized with the enable (E) signal. This input also
indicates that the processor should use automatic vectoring for an interrupt. Refer to
“SECTION 6 INTERFACE WITH 6800 PERIPHERALS”.

4.1.7.3 Valid Memory Address (VMA)

This output is used to indicate to 6800 peripheral devices that these is a valid address
on the address bus and the processor is synchronized to enable. This signal only
responds to a valid peripheral address (VPA) input which indicates that the peripheral
is an 6800 Family device.

MPU00-28
B 9097249 0047449 934 HE

TOSHIBA TMP68HC000

4.1.8 Processor Status (FCO, FC1, FC2)

These function code outputs indicate the state (user or supervisor) and the cycle type
currently being executed, as shown in Table 4.2. The information indicated by the
function code outputs is valid whenever address strobe (AS) is active.

Table 4.2 Function Code Outputs

FC2 FC1 FCO Cycle Type
Low Low Low [(Undefined, Reserved)
Low Low High | User Data

Low High Low | User Program

Low High High |(Undefined, Reserved)

High Low Low |(Undefined, Reserved)

High Low High |Supervisor Data

High High Low |Supervisor Program

High High High |[Interrupt Acknowledge

4.1.9 Clock (CLK)

The clock input is a TTL-compatible signal that is internally buffered for
development of the internal clocks needed by the processor. The clock input should not
be gated off any time and the clock signal must conform to minimum and maximum
pulse width times.

MPU00-29
B 9097249 0047450 LSL |

TOSHIBA

TMP68HC000

4.1.10 Signal Summary

Table 4.3 is a summary of all the signals discussed in the previous paragraphs.

Table 4.3 Signal Summary

Hi-Z
Signal Name Mnemonic Input/Output AS‘t::‘:’: 3 State on HACT —oi__
BGACK
Address Bus A1~A23 Output High Yes Yes Yes
Data Bus DO~D15 Input/ Output High Yes Yes Yes
Address Strove AS Output Low Yes No Yes
Read / Write RAW Output 35:1'1?:’ Yes No Yes
ggfae:tiggetower DS, DS Output Low Yes No Yes
2?;?\1;3;;?;; BTACK Input Low No No No
Bus Request BR Input Low No No No
Bus Grant BG Output Low No No No
Bus Grant Acknowledge |BGACK Input Low No No No
Interrupt Priority Level |TPLO, TPLT, IPL2 Input Low No No No
Bus Error BERR Input Low No No No
Reset RESET Input/Qutput Low Yes Not No?
Halt HALT Input/Output Low Yes No? Nol
Enable E Output High No No No
Valid Memory Address {VMA Output Low Yes No Yes
Valid Peripheral Address |VPA Input Low No No No
Function Code Output FCO, FC1, FC2 Output High Yes No Yes
Clock CLK Input High No No No
Power Input Vce Input - - - -
Ground GND Input - - - -
Note :
1. Opendrain
MPUO00-30

B 9097249 004?451 592 W

TOSHIBA TMP68HC000

4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data
transfer operations, bus arbitration, bus error and halt conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following leads:

1. address bus A1~A23
2. data bus DO0~D15
3. control signals

The address and data buses are separate parallel buses used to transfer data using an
asynchronous bus structure. In all cycles, the bus master assumes responsibility for
deskewing all signals it issues at both the start and end of a cycle. In addition, the bus
master is responsible for deskewing the acknowledge and data signals from the slave
device.

The following paragraphs explain the read, write, and read-modify-write cycles. The
indivisible read-modify-write cycle is the method used by the TMP68HC000 for
interlocked multiprocessor communications.

4.2.1.1 Read Cycle

During a read cycle, the processor receives data from the memory or a peripheral
device. The processor reads bytes of data in all cases. If the instruction specifies a word
(or double word) operation, the processor reads both upper and lower both
simultaneously by asserting both upper and lower data strobes. When the instruction
specifies byte operation, the processor uses an internal A0 bit to determine which byte to
read and then issues the data strobe required for that byte. For byte operations, when
the A0 bit equals zero, the upper data strobe is issued. When the AQ hit equals one, the
lower data strobe is issued. When the data is received, the processor correctly positions
it internally.

A word read cycle flowchart is given in Figure 4.2. A byte read cycle flowchart is
given in Figure 4.3. Read cycle timing is given in Figure 4.4. Figure 4.5 details word
and byte read cycle operations.

MPU00-31

B 9097249 0U47452 429 W

TOSHIBA TMP68HC000

BUS MASTER SLAVE

Address the Device

1) SetR/W to Read

2) Place Function Code on FCO~FC2

3) Place Addresson A1~A23

4) Assert Address Strove (AS)

5) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (LDS)

Input the Data

1) Decode Address

2) Place Data on DO~D15

3) Assert Data Transfer Acknowledge
(DTACK)

Acquire the Data

1) Latch Data
2) Negate UDS and LDS
3) Negate AS

Terminate the Cycle

1) Remove Data from DO~D15
2) Negate DTACK

Start Next Cycle

Figure 4.2 Word Read Cycle Flowchart

MPUOQ0-32
H 9097249 0047453 365 W

TOSHIBA TMP68HCO000

BUS MASTER SLAVE

Address the Device

1) SetR/W to Read
2} Place Function Code on FCO~FC2
3) Place Address on A1~A23
4) Assert Address Strove (AS)
5) Assert Upper Data Strove (UDS) or
Lower Data Strobe (LDS)
(based on AQ) Input the Data

1) Decode Address

2) Place Data on DO~D7 or D8~D15
(based on UDS or LD3)

3) Assert Data Transfer Acknowledge

(DTACK)
Acquire the Data - |
1) tatch Data
2) Negate UDS or LDS
3) Negate AS
e — Terminate the Cycle

1) Remove Data from DO~D7 or
D8~D15
2) Negate DTACK

Start Next Cycle

Figure 4.3 Byte Read Cycle Flowchart

MPU00-33
BN 3097249 0047454 2T W

TOSHIBA TMP68HC000

50 $152 $3 54 5556 57 SO 5152 S3 54 5556 57 S0 5152 $S354 W W W W 5556 57
CLK

Feo~Fc2 __X_ — X X
a1~n23 __ = —_ —_

', Read } Write { Slow Read ————>|

Figure 4.4 Read and Write Cycle Timing Diagram

MPUO00-34
B 9097249 0047455 138 W

TOSHIBA TMPG8HC000

SO 51 52 53 5S4 S5 56 S7 SO S1 S2 $3 54 S5 S6 57 SO S1 52 53 $S4 55 S S7

CLK

Fco~Fc2 X X X J e —

A1~p23 ~ DG = _—
Alx | L

D0~D7 ———— (" ")

* tinternal Signal Only

l‘— Word Read —>I<— Odd Byte Read —>|<— Even Byte Read —>

Figure 4.5 Word and Byte Read Cycle Timing Diagram

MPU00-35
B 9097249 004745k 074 EE

TOSHIBA TMP68HC000

4.2.1.2 Write Cycle

During a write cycle, the processor sends data to either the memory or a peripheral
device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte
operation, the processor uses an internal AO bit to determine which byte to write and
then issues the data strobe required for that byte. For byte operations, when the A0 bit
equals zero, the upper data strobe is issued. When the A0 bit equals one, the lower data
strobe is issued. A word write flowchart is given in Figure 4.6. A byte write cycle
flowchart is given in Figure 4.7. Write cycle timing is given in Figure 4.4. Figure 4.8
details word and byte write cycle operation.

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO~FC2

2} Place Addresson A1~A23

3) Assert Address Strobe (AS)

4) setR/W to Write

5) Place Data on DO~D15

6) Assert Upper Data Strobe (UDS) Input the Data
and Lower Data Strobe (LDS)

1) Decode Address
. 2) Store Data on DO~D15
Terminate Output Transfer 3) Assert Data Transfer Acknowledge
(DTACK)

1) Negate UDS and LDS
2) Negate AS
3) Remove Data from DO~D15

4) SetR/Wto Read : Terminate the Cycle’

=

1) Negate DTACK

Start Next Cycle

Figure 4.6 Word Write Cycle Flowchart

MPUO00-36
BN 9097249 0Qu?45? TOO HE

TOSHIBA TMP68HC000

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO~FC2

2) Place Address on A1~A23

3) Assert Address Strobe (AS)

4) SetR/W to Write

5) Place Data on DO~D7 or D8~D15
(according to AQ)

==

6) Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LDS) ‘_,r Input the Data
(based on AD)
1) Decode Address
2) Strove Dataon DO~D7if LD is
Asserted
Strove Data on D8~D15 if UDS is
Terminate Output Transfer Asserted
—— — 3) Assert Data Transfer Acknowledge
1) Negate UDS and (D3 (DTACK)
2) Negate AS
3) Remove Data from DO~D7 or
D8~D15
4) SetR/Wto Read J‘—» Terminate the Cycle
1) Negate DTACK
Start Next Cycle

Figure 4.7 Byte Write Cycle Flowchart

MPU00-37
M 9097249 0047458 947 EE

TOSHIBA ~ TMP68HC000

S0 S1 S2 S3 54 S5 S6 57 SO S1 52 S3 455 6 57 SO S1 S2 S3 S4 S5 S6 S7

rcomrcz X C - —X
sz D -C < >
A0* ul I
ST T

D8~D15 — J——(:)‘_::)'_
00~D7 — —)———(::‘—'—:)_

* :Internal Signa! Only
|<——— Word Write ——>I<——- QOdd Byte Write ——> |<—— Even Byte Write —Pi

Figure 4.8 Word and Byte Write Cycle Timing Diagram
4.2.1.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, modifies the data in the arithmetic-logic
unit, and writes the data back to the same address. In the TMP68HC000, this cycle is
indivisible in that the address strobe is asserted throughout the entire cycle. The test
and set (TAS) instruction uses this cycle to provide meaningful communication between
processors in a multiple processor environment. This instruction is the only instruction
that uses the read-modify-write cycles and since the test and set instruction only
operates on bytes, all read-modify-write cycles are byte operations. A read-modify-write
flowchart is given in Figure 4.9 and a timing diagram is given in Figure 4.10.

MPU00-38
m 9097249 004?459 8443 W

TOSHIBA

TMP68HC000

BUS MASTER

-—

Address the Device

1) SetR/W to Read

2) Place Function Code on FCO~FC2

3) Place Addresson A1~A23

4) Assert Address Strobe (AS)

5) Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LD3)

=

SLAVE

Input the Data

1)

Acquire the Data

2)
3)

1) Latch Data
2) Negate UDS or LDS
3) Start Data Modification

=

Decode Address

Place Data on DO~D7 or D§~D15
Assert Data Transfer Acknowledge
(DTACK)

Start Output Transfer

Terminate the Cycle

1) SetR/W to Write

Place Data on DO~D7 or D8~D15
Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LDS)

w N
~— o~

Remove Data from DO~D7 or
D8~D15
Negate DTACK

Terminate Output Transfer

Input the Data

1)
2

1) Negate UDS or DS

2) Negate AS

3} Remove Data from DO~D7 or
D8~D15

SetR/W to Read

~—

4

=

Store Data on DO~D7 or D8~D15
Assert Data Transfer Acknowledge
(DTACK)

Start Next Cycle

Terminate the Cycle

—_
~

Negate DTACK

Figure 4.9 Read-Modify-Write Cycle Flowchart

MPUO00-39

M 9097249 004?460 5TS WM

TOSHIBA TMP68HC000

0 S1 52 $3 S4 S5 $6 57 S8 $9 510 511512513 $14 515 $16 S17 518 S19
CLK

Fco~Fc2 _ X X
A1~A23 Ty (T Ve

DTACK ____/ __/
D0~D7 (") —
or
08~D15

| Indivisible Cycle |

Figure 4.10 Read-Modify-Write Cycle Timing Diagram
4.2.2 Bus Arbitration

Bus arbitration is technique used by master-type devices to request, be granted, and
acknowledge bus mastership. In its simplest form, it consists of the following:

1. asserting a bus mastership request
9. receiving a grant that the bus is available at the end of the current cycle
3. acknowledging that mastership has been assumed

Figure 4.11 is a flowchart showing the detail involved in a request from a single
device. Figure 4.12 is a timing diagram for the same operation. This technique allows
processing of bus requests during data transfer cycles. The timing diagram shows that
the bus request is negated at the time that an acknowledge is asserted. This type of
operation would be true for a system consisting of the processor and one device capable of
bus mastership. In systems having a number of devices capable of the busmastership,
the bus request line from each device is wire ORed to the processor. In this system, it is
easy to see that there could be more than one bus request being made. The timing
diagram shows that the bus grant signal is negated a few clock cycles after the
transition of the acknowledge (BGACK) signal.

MPU0O0-40
B 9097249 0047461 431 I

TOSHIBA TMP68HC000

PROCESSOR REQUESTING DEVICE

Request the Bus

1) Assert Bus Request (BR)
Grant Bus Arbitration

1) AssertBus Grant (BG)

Acknowledge bus Mastership

1} External Arbitration Determines
Next Bus Master

Next Bus Master Waits for Current
Cycle to Complete

3) Next Bus Master Asserts Bus Grant
Acknoledge (BGACK) to Become
New Master

Bus Master Negates BR

2

—

=

Terminate Arbitration - 14

1) Negate BG (and Wait for BGACK to
be Negated)

Operate as Bus Master

1) Perform Data Transfers (Read and
Write Cycles) According to the

Same Rules the Processor Uses
N

Refease Bus Mastership

1) Negate BGACK

Re-Arbitrate or Resume
Processor Operation

Figure 4.11 Bus Arbitration Cycle Flowchart

MPU00-41
B 9097249 004?4L2 378 W

TOSHIBA TMP68HCO00

seack . [/ \

Processor ——>|*'— DMA Device —>|<——“ Processor ‘—>|‘—‘— DMA Device —

Figure 4.12 Bus Arbitration Cycle Timing Diagram

4.2.2.1 Requesting the Bus

External devices capable of becoming bus masters request the bus by asserting the
bus request (BR) signal. Thisisa wire-ORed signal (although it need not be constructed
from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority
level than the external device and will relinquish the bus after it has completed the last
bus cycle it has started. ‘

When no acknowledge is received before the bus request signal goes inactive, the
processor will continue processing when it detects that the bus request is inactive. This
allows ordinary processing to continue if the arbitration circuitry responded to noise
inadvertently.

MPU00-42
BN 9097249 00u4?ub3 204 M

TOSHIBA TMP68HC000

4.2.2.2 Receiving the Bus Grant

The processor asserts bus grant (BG) as soon as possible. Normally this is
immediately after internal synchronization. The only exception to this occurs when the
processor has made an internal decision to execute the next bus cycle but has not
progressed far enough into the cycle to have asserted the address strobe (AS) signal. In
this case, bus grant will be delayed until AS is asserted to indicate to external devices
that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a
specific priority-encoded network. The processor is not affected by the external method
of arbitration as long as the protcol is obeyed.

4.2.2.3 Acknowledgement of Mastership

Upon receiving a bus grant, the requesting device waits until address strobe, data
transfer acknowlegde, and bus grant acknowledge are negated before issuing its own
BGACK. The negation of the address strobe indicates that the previous master has
completed its cycle; the negation of bus grant acknowledge indicates that the previous
master has released the bus. (While address strobe is asserted, no device is allowed to
“break into” a cycle.) The negation of data transfer acknowledge indicates the previous
slave has terminated its connection to the previous master. Note that in some
applications data transfer acknowledge might not enter into this function., General
purpose devices would then be connected such that they were only dependent on address
strobe. When bus grant acknowledge is issued, the device is a bus master until it negates
bus grant acknowledge. Bus grant acknowledge should not be negated until after the
bus cycle(s) is (are) completed. Bus mastership is terminated at the negation of bus
grant acknowledge.

The bus request from the granted device should be dropped after bus grant
acknowledge is asserted. If a bus request is still pending, another bus grant will be
asserted within a few clocks of the negation of the bus grant. Refer to “4.2.8 Bus
Arbitration Control”. Note that the processor does not perform any external bus cycles
before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the TMP6SHCO000 is implemented with a finite
state machine. A state diagram of this machine is shown in Figure 4.13. All
asynchronous signals to the TMP68HCO00 are synchronized before being used
internally. This synchronization is accomplished in a maximum of one cycle of the
system clock, assuming that the asynchronous input setup time (#47) has been met (see
Figure 4.14) . The input signal is sampled on the falling edge of the clock and is valid
internally after the next falling edge.

MPU00-43
B 9097249 0047ubY 1y0 WM

TOSHIBA TMP68HC000

|
>|

RAY XAD 5

= Bus Request Internal

= Bus Grant Acknoledge Internal

= Bus Grant

= Three-State Control to Bus Control Logic?)
= Don’t Care

X 460 >» >

Notes :
1) State machine will not change if the bus is S0 or S1. Refer to “4.2.3 Bus Arbitration Control”.
2) The address bus will be placed in the high-impedance state if T is asserted and AS is negated.

Figure 4.13 TMP68HCO000 Bus Arbitration Unit State Diagram

MPUQ0-44
B 9097249 004?ubL5S 047 HE

TOSHIBA TMP68HC000

Internal Signal Valid
External Signal Sampled —l

CLK ——l
BR (External) *\

N
@

BR (Internal) —\

Figure 4.14 Timing Relationship of External Asynchronous Inputs to Internal Signals

As shown in Figure 4.13, input signals labeled R and A are internally synchronized
on the bus request and bus grant acknowledge pins respectively. The bus grant output is
labeled G and the internal three-state control signal T. If T is true, the address, data,
and control buses are placed in a high-impedance state when AS is negated. All signals
are shown in positive logic (active high) regardless of their true active voltage level.
State changes (valid outputs) occur on the next rising edge after the internal signal is
valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is
shown in Figure 4.15. The bus arbitration sequence while the bus is inactive (i.e.,
executing internal operations such as a multiply instruction) is shown in Figure 4.16.

If a bus request is made at a time when the MPU has already begun a bus cycle but
AS has not been asserted (bus state S0) , BG will not be asserted on the next rising edge.
Instead, BG will be delayed until the second rising edge following its internal assertion.
This sequence is shown in Figure 4.17.

MPU00-45
B 9097249 00474bk T13 BN

TOSHIBA

TMP68HC000

BGACK Negated

BG Asserted
8R Valid Internal
BR Sampled Bus Three Stated
BR Asserted ——1

SO S1 52 53 54 S5 56 S7

BGACK Sampled

BGACK Negated Internal

Bus Released from Three
State and Processor Starts
Next Bus Cycle

S0 S1 S2 $3 S4 5556 57 50 51

w T\

BR
BG ___ /
BGACK n__ /
Feo~FC2 X o {__ — X
pieazs —) —C
s /" —___/
ws . —_ /" —___ [
ws . /0 —__ [/
R/W \ /
orack o/ __/
0~D15 (G ——

- ————— — |
Processor | Alternate Bus Master

-——>|<——— Processor —>

Figure 4.15 Bus Arbitration Timing Diagram — Processor Active

MPU00-46
B 9097249 D0O4?ubL? 957 EE

TOSHIBA TMP68HC000

— BGACK Negated
BG Asserted and Bus 9
Three Stated

lid | | Bus Released from Three
R valid interna State and Processor Starts

R sampled Next Bus Cycle
BR Asserted \L l

S0 51 52 $S3 54 S5 $6 S7

BR n___/

gl

@

CLK

50 S152 53 54

m~az >

%

i

g
r

DTACK ___/
D0~D15 ﬂ

Bus Inactive Processor

~—— Processor ——»I Alternate Bus Master ———»l

Figure 4.16 Bus Arbitration Timing Diagram ~ Bus Inactive

MPU00-47
B 9097249 0047468 89 EE

TOSHIBA TMP68HC000

Bus Three Stated
BG Asserted
BR Vaiid Internal
BR Sampled
BR Asserted

BGACK Negated Internal

BCACK Bus Release from Three State
BGACK sampled l— and Processor Starts Next Bus

BGACK Negated 1 Cycle

CLK

S0 52 sS4 S6 SO S2 54 56 50

FCO~FC2 A) - X_
pi~a2z < > —_

E
|

E
|

|

I ey —
DO~D15 | U N
-— Processor ——-——->|<— Alternate Bus Master ——>|<—— Processor —>

Figure 4.17 Bus Arbitration Timing Diagram — Special Case

MPU00-48
B 5097249 0047469 722 M

TOSHIBA TMP68HC000

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the
possibility exists that the handshake might not occur. Since different systems will
require a different maximum response time, a bus error input is provided. External
circuitry must be used to determine the duration between address strobe and data
transfer acknowledge before issuing a bus error signal. When a bus error signal is
received, the processor has two options: initiate a bus error exception sequence or try
running the bus cyele again.

4.2.4.1 BusError Operation

When the bus error signal is asserted, the current bus cycle is terminated. If BERR is
asserted before the falling edge of S2, AS will be negated in S7 in either a read or write
cycle. Aslong as BERR remains asserted, the data and address buses will be in the high-
impedence state. When BERR is negated, the processor will begin stacking for exception
processing. Figure 4.18 is a timing diagram for the exception sequence. The sequence is
composed of the following elements:

- stacking the program counter and status register
. stacking the error information

. reading the bus error vector table entry

. executing the bus error handler routine

B O N =

The stacking of the program counter and status register is the same-as if an interrupt
had occurred. Several additional items are stacked when a bus error occurs, These
items are used to determine the nature of the error and correct it, if possible. The bus
error vector is vector number two located at address $000008. The processor loads the
new program counter from this location. A software bus error handler routine is then
executed by the processor. Refer to “5.2 EXCEPTION PROCESSING” for additional
information.

MPU00-49
B 9097249 004?470 44y mm

TOSHIBA TMP68HC000

FCO~FC2 __—X

A1~A23 D‘r J—N—:
AS \ 2

™\
DS /UDS \ _/ - N
A‘
RIW N
DTACK ‘ _
—
Do~D15 — ? N —
BERR \ /o
o N—
HALT it
Initiate Read E:-?geztgcak‘f:\g

HALT = HIGH «——»| <« Response Failure > | ~«—— Bus Error Detection |

Figure 4.18 Bus Error Timing Diagram

4.2.4.2 Re-Run Operation

When, during a bus cycle, the processor receives a bus error signal and the halt pin is
being driven by an external device, the processor enters the re-run sequence. Figure
4.19 is a timing diagram for re-running the bus cycle. ’

The processor terminates the bus cycle, then puts the address and data output lines in
the high-impedence state. The processor remains “halted”, and will not run another bus
cycle until the halt signal is removed by external logic. Then the processor will re-run
the previous cycle using the same function codes, the same data (for a write operation) ,
and the same controls. The bus error signal should be removed at least one clock cycle
before the halt signal is removed.

Note: The processor will not re-run a read-modify-write cycle. This restriction is
made to guarantee that the entire cycle runs correctly and that the write
operation of a test-and-set operation is performed without ever releasing AS.
If BERR and HALT are asserted during a read-modify-write bus cycle, a bus
error operation results.

MPU00-50
B 9097249 0047471 380 WE

TOSHIBA TMP68HCO000

S0 52 54 56 S8 S0 52 sS4 56

FCO~FC2 X X
aimazy > —_ <
A N/ N/
ms/os N/ N/

v

2 1 Clock Period ’

AALT A A

| Read | Hall ————>|«—— ReRun ——»

Figure 4.19 Re-Run Bus Cycle Timing Diagram
4.2.4.3 Halt Operation

The halt input signal to the TMP68HC000 performs a halt/run/single-step function in
a similar fashion to the 6800 halt function. The halt and run modes are somewhat self
explanatory in that when the halt signal is constantly active the processor “halts” (does
nothing) and when the halt signal is constantly inactive the processer “runs” (does
something) .

This single-step mode is derived from correctly timed transitions on the halt signal
input. It forces the processor to execute a single bus cycle by entering the run mode until
the processor starts a bus cycle then changing to the halt mode. Thus, the single-step
mode allows the user to proceed through (and therefore debug) processor operations one
bus cycle at a time.

Figure 4.20 details the timing required for correct single-step operations. Some care
must be exercised to avoid harmful interactions between the bus error signal and the
halt pin when using the single-cycle mode as a debugging tool. This is also true of
interactions between the halt and reset lines since these can reset the machine.

MPU00-51
B 9097249 004?472 217 L

TOSHIBA TMP68HC000

Fco~F2 __X) &
a1~a23 D —__ >

R/IW
stack | N~/ __ /
po~p1s — —— —
e\ /S

l<——— Read | Halt | Read —-—>|

Figure 4.20 Halt Processor Timing Diagram

When the processor completes a bus cycle after recognizing that the halt signal is
active, most three-state signals are put in the high-impedence state, these include:

1. address line

2. data lines

This is required for correct performance of the re-run bus cycle operation.

While the processor is honoring the halt request, bus arbitration performs as usual.
That is, halting has no effect on bus arbitration. It is the bus arbitration function that
removes the control signals from the bus.

The halt function and the hardware trace capability allow the hardware debugger to
trace single bus cycles or single instructions at a time. These processor capabilities,
along with a software debugging package, give total debugging flexibility.

4.2.4.4 Double Bus Faults

When a bus error exception occurs, the processor will attempt to stack several words
containing information about the state of the machine. If a bus error exception occurs
during the stacking operation, there have been two bus error in a row. This is commonly
referred to as a double bus fault. When a double bus fault occurs, the processor will halt.
Once a bus error exception has occurred, any bus error exception occurring before the
execution of the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception and
dose not contribute to a double bus fault. Note also that this means that as long as the
external hardware requests it, the processor will continue to re-run the same bus cycle.

MPU00-52
BN 9097249 0047473 153 W

TOSHIBA TMP68HCO000

The bus error pin also has an effect on processor operation after the processor receives
an external reset input. The processor reads the vector table after a reset to determine
the address to start program execution. If a bus error occurs while reading the vector
table (or at any time before the first instruction is executed) , the processor reacts as if a
double bus fault has occurred and it halts. Only an external reset will start a halted
processor.

4.2.5 Reset Operation

The reset signal is a bidirectional signal that allows either the processor or an
external signal to reset the system. Figure 4.21 is a timing diagram for the reset
operation. Both the halt and reset lines must be asserted to ensure total reset of the
processor.

When the reset and halt lines are driven by an external device, it is recognized as an
entire system reset, including the processor. The processor responds by reading the
reset vector table entry (vector number zero, address $000000) and loads it into the
supervisor stack pointer (SSP). Vector table entry number one at address $000004 is
read next and loaded into the program counter. The processor initializes the status
register to an interrupt level of seven. No other registers are affected by the reset
sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock
periods. In this case, the processor is trying to reset the rest of the system. Therefore,
there is no effect on the internal state of the processor. All of the processor’s internal
registers and the status register are unaffected by the execution of a reset instruction.
All external devices connected to the reset line will be reset at the completion of the
reset instruction.

Asserting the reset and halt lines for ten clock cycles will cause a processor reset,
except when Vee is initially applied to the processor. In this case, an external reset must
be applied for at least 100 milliseconds.

MPU00-53
B 9097249 0047474 09T WA

TOSHIBA TMP68HCO00

+5Volts =—=————=
Ve _,/ |e——— 1t0 100 ms ——>I

RESET '] l
HALT "| |
|~ > t<4Clocks Tt
Bus Cyces XXXKOOOOONNN) XXX
All Control Signals Inactive Data
Bus State Unknown Bus In Read Mode 2 3 4 5 6
Notes :

(1) Internal start-up time (4) PC High read in here
(2) SSP High read in here (5) PC Low read in here
(3) SSP Low read in here (6) First instruction fetched here

Figure 4.21 Reset Operation Timing Diagram

4.3 THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a re-run or a bus error
condition, DTACK, BERR, and HALT should be asserted and negated on the rising edge '
of the TMP68HCO000 clock. This will assure that when two signals are asserted
simultaneously, the required setup time (#47) for both of them will be met during the
same bus state. :

This, or some equivalent precaution, should be designed external to the
TMP68HC000. Parameter #48 is intended to ensure this operation in a totally
asynchronous system, and may be ignored if the above conditions are met.

The preferred bus cycle terminations may be summarized as follows (case numbers

refer to Table 4.4) :

Normal Termination : DTACK occurs first (case 1) .

Halt Termination : HALT is asserted at the same time or before DTACK
and BERR remains negated (cases 2 and 3) .

Bus Error Termination : BERR is asserted in lieu of, at the same time, or before
DTACK (case 4) ; BERR is negated at the same time or
after DTACK.

MPU00-54

B 9097249 004?475 T2bL HN

TOSHIBA TMP68HC000

Re-Run Termination ; HALT and BERR are asserted in lieu of, at the same
time, or before DTACK (cases 6 and 7) ; HALT must be
held at least one cycle after BERR. Case 5 indicates
BERR may precede HALT which allows fully asyn-
chronous assertion.

Table 4.4 details the resulting bus cycle termination under various combinations of
control signal sequences. The negation of these same contral signals under several
conditions is shown in Table 4.5 (DTACK is assumed to be negated normally in all cases;
for best results, both DTACK and BERR should be negated when address strobe is
negated) .

MPU00-55
M 9097249 0047476 962 I

TOSHIBA TMP68HC000

Table 4.4 DTACK, BERR, and HALT Assertion Results

Asserted on Rising
Case No. |control Signal Edge State Result
N N+2
DTACK A S .
1 BERR NA X L\loor:;n:LI‘:ycle terminate and
HALT NA X
DTACK A 5 Normal cycle terminate and halt.
2 BERR NA X Continue when HALT remaved
HALT A S ’
DTACK NA A Normat cycle terminate and halt.
3 ___BERR NA NA Continue when HALT removed
HALT A S ’
DTACK X X .
A BERR A S :’;rmmate and take bus error
HALT NA NA P
DTACK NA X
5 BERR A S Terminate and re-run.
HALT NA A
DTACK X X . i
- L
6 SERR A S I:r:ﬁn;;neegce and re-run when HALT
HALT A S ’
DTACK NA X . e
A - HALT
7 BERR NA A ::;rglvnez(e and re-run when HAL
HALT A S :
Legend :
N . the number of the current even bus state (e.g., 54, 56, etc.)
A : signal is asserted in this bus state
NA : signalisnotassertedin thisstate
X : don’tcare
S : signal was asserted in previous state and remains asserted in this state
MPU00-56

B 9097249 0047477 &4T9 M

TOSHIBA TMP68HC000

Table4.5 BERR and HALT Negation Results

Conditions of Contro I::gatefdson Rising
Terminationin signal ge of State Results — Next Cycle
Table 4.4 N N+2
BERR [or [
Bus Error HALT . or . Takes bus error trap.
Re-run BERR ° or ° Illegal sequence; usually traps
HALT . to vector number 0.
BERR ®
Re-run HALT R Re-runs the bus cycle.
BERR [
Normal HALT o or o May lengthen next cycle.
Normal BERR * If next cycle is started it will be
HALT ° or none |terminated asabuserror,
. : Signalis negated in this bus state.

EXAMPLEA : A system uses a watch-dog timer to terminate
accesses to unpopulated address space. The timer
asserts DTACK and BERR simultaneously after
time out (case 4) .

EXAMPLEB : A system uses error detection on RAM contents.
Designer may

(a)delay DTACK until data verified and return

BERR and HALT simultaneously to re-run error

cycle (case 6) , or if valid, return DTACK (case 1)

(b)delay DTACK until data verified and return
BERR at same time as DTACK if data in error
(case 4) .

MPU00-57
B 9097249 004?474 735 I

TOSHIBA TMP68HC000

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at a system level, the TMP68HCO000 can be
used in an asynchronous manner. This entails using only the bus handshake lines (AS,
UDS, LDS, DTACK, BERR, HALT, and VPA) to control the data transfer. Using this
method, AS signals the start of a bus cycle and the data strobes are used as a condition
for valid data on a write cycle. The slave device (memory or peripheral) then responds
by placing the requested data on the data bus for a read cycle or latching data on a write
cycle and asserting the data transfer acknowledge signal (DTATK) to terminate the bus
cycle. If no slave responds or the access is invalid, external control logic asserts the
BERR, or BERR and HALT, signal to abort or rerun the bus cycle.

The DTACK signal is allowed to be asserted before the data from a slave device is
valid on a read cycle. The length of time that DTACK may precede data is given as
parameter #31 and it must be met in any asynchronous system to insure that valid data
is latched into the processor. Notice that there is no maximum time specified from the
assertion of AS to the assertion of DTACK. This is because the MPU will insert wait
cycles of one clock period each until DTACK is recognized.

4.4.2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DTACK
and other asynchromous inputs, the asynchronous input setup time is given as
parameter #47. If this setup is met on an input, such as DTACK, the processor is
guaranteed to recognize that signal on the next falling edge of the system clock,
However, the converse is not true - if the input signal does not meet the setup time it is
not guaranteed not to be recognized. In addition, if DTACK is recognized on a falling
edge, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this,
parameter #31 may be ignored. Note that if DTACK is asserted, with the required setup
time, before the falling edge of S4, no wait states will be incurred and the bus cycle will
run at its maximum speed of four clock periods.

Note: During an active bue cycle, BERR is sampled on every falling edge of the clock
starting with 82. DTACK is sampled on every falling edge of the clock starting
with S4 and data is latched on the falling edge of S6 during a read. The bus
cycle will then be terminated in S7 except when BERR is asserted in the absence
of DTACK, in which case it will terminate one clock cycle later in S9, VPA
issampled only on the third falling edge of the system clock before the rising
edge of the E clock.

MPUQO-58
B 9097249 0047479 &7) N

TOSHIBA TMP68HC000

5.

5.1

PROCESSING STATES

This section describes the actions of the TMP68HCO000 which are outside the normal
processing associated with the execution of instructions. The functions of the bits in the
supervisor portion of the status register are covered: the supervisorfuser bit, the trace
enable bit, and the processor interrupt priority mask. Finally, the sequence of memory
references and actions taken by the processor on exception conditions are detailed.

The TMP68HCO00 is always in one of three processing states: normal, exception, or
halted. The normal processing state is that associated with instruction execution; the
memory references are to fetch instructions and operands, and to store results. A special
case of the normal state is the stopped state which the processor enters when a stop
instruction is executed. In this state, no further references are made.

The exception processing state is associated with interrupts, trap instructions,
tracing, and other exceptional conditions. The exception may be internally generated by
an instruction or by an unusual condition arising during the execution of an instruction.
Externally, exception processing can be forced by an interrupt, by a bus error, or by a
reset. Exception processing is designed to provide an efficient context switch so that the
processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For
example, if during the exception processing of a bus error another bus error occurs, the
processor assumes that the system is unusable and halts. Only an external reset can
restart a halted processor. Note that a processor in the stopped state is not in the halted
state, nor vice versa.

PRIVILEGE STATES

The processor operates in one of two states of privilege: the “supervisor” state or the
“user” state. The privilege state determines which operations are legal, are used to
choose between the supervisor stack pointer and the user stack pointer in instruction

references, and may by used by an external memory management device to control and
translate accesses.

The privilege state is a mechanism for providing security in a computer system.
Programs should access only their own code and data areas, and ought to be restricted
from accessing information which they do not need and must not modify.

The privilege mechanism provides sequrity by allowing most programs to execute in
user state. In this state, the accesses are controlled, and the effects on other parts of the
system are limited. The operating system executes in the supervisor state, has access to
all resources, and performs the overhead tasks for the user state programs.

MPUO00-59
BN 9097249 0047480 393 M

TOSHIBA TMP68HC000

5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the
supervisor state is determined by the S bit of the status register; if the S bit is asserted
(high) , the processor is in the supervisor state. All instructions can be executed in the
supervisor state. The bue cycles generated by instructions executed in the supervisor
state are classified as supervisor references. While the processor is in the supervisor
privilege state, those instructions which use either the system stack pointer implicitly or
address register seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the setting of
the S bit. The bus cycles generated during exception processing are classified as
supervisor references. All stacking operations during exception processing use the
supervisor stack pointer.

5.1.2 User State

The user state is the lower state of privilege. For instruction execution, the user state
is determined by the S bit of the status register; if the S bit is negated (low) , the
processor is executing instructions in the user state.

Most instructions execute the same in user state as in the supervisor state. However,
some instructions which have important system effects are made privileged. User
‘programs are not permitted to execute the stop instruction or the reset instruction. To
ensure that a user program cannot enter the supervisor state except in a controlled
manner, the instructions which modify the whole state register are privileged. To aid in
debugging programs which are to be used as operating systems, the move to user stack
pointer (MOVE to USP) and move from user stack pointer (MOVE from USP)
instructions are also privileged. The bus cycles generated by an instruction executed in
the user state are classified as user state references. This allows an external memory
management device to translate the address and to control access to protected portions of
the address space. While the processor is in the user privilege state, those instructions
which use either the system stack pointer implicitly or address register seven explicitly,
access the user stack pointer.

5.1.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception
processing can change the privilege state. During exception processing, the current
setting of the S bit of the status register is saved and the S bit is asserted, putting the
processor in the supervisor state. Therefore, when instruction execution resumes at the
address specified to process the exception, the processor is in the supervisor privilege
state.

MPU00-60
B 9097249 O0O47481 22T M

TOSHIBA TMP68HCO000

5.1.4 Reference Classification

5.2

When the processor makes a reference, it classifies the kind of reference being made,
using the encoding on the three function code output lines. This allows external
translation of addresses, control of access, and differentiation of special processor state,
such as interrput acknowledge. Table 5.1 lists the classification of references.

Table 5.1 Bus Cycle Classification

Function Code
Output
Vtpy Reference Class
FC2 | FC1 | FCO

L L L j(Unassigned)
L L H | UserData
L H L |UserProgram
L H H [{Unassigned)
H L L {{Unassigned)
H L H |Supervisor Data
H H L |Supervisor Program
H H H lInterrupt Acknowledge

Note : L:LOW H:HIGH

EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of
exception processing is in order. The processing of an exception oceurs in four steps,
with variations for different exception causes. During the first step, a temporary copy of
the status register is made and the status register is set for exception processing. In the
second step the exception vector is determined and the third step is the saving of the
current processor context. In the fourth step a new context is obtained and the processor
switches to instruction processing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address
of a routine which will handle that exception. All exception vectors are two words in
length (Figure 5.1) , except for the reset vector which is four words. All exception vectors
lie in the supervisor data space, except for the reset vector which is in the supervisor
program space. A vector number is an 8-bit number which, when multiplied by four,
gives the address of an exception vector. Vector numbers are generated internally or
externally, depending on the cause of the exception. In the case of interrupts, during the
interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number (Figure
5.2) to the processor on data bus lines DO~D7. The processor translates the vector
number into a full 32-but address, shown in Figure 5.3. The memory layout for
exception vectors is given in Table 5.2.

MPU00-61
B 9097249 0047482 1lbb N

TOSHIBA TMP68HC000

Word 0 New Program Counter (High) AQ=0, A1=0

Word 1 New Program Counter (Low) A0=0, A1=1

Figure5.1 Format of Vector Table Entries

D15 D8 D7 DO
ignored [v7[ve [vs [v4 |v3]va|vi|vo|
Msg — LSB

Vector Number

Figure5.2 Vector Number Format

A31 A0 AQ
| All Zeroes |v7|ve|v5|v4|v3 |v2 |v1 |vo| 0 | 0 |

Figure5.3 Exception Vector Address Calculation

As shown in Table 5.2, the memory layout is 512 words long (1024 bytes) . It starts at
address 0 and proceeds through address 1023. This provides 255 unique vectors; some of
these are reserved for TRAPS and other system functions. Of the 255, there are 192
reserved for user interrupt vectors. However, there is no protection on the first 64
entries, so user interrupt vectors may overlap at the discretion of the systems designer.

MPU00-62
B 9097249 0047443 OT2 NN

TOSHIBA TMP68HC000

Table 5.2 Exception Vector Table

Vector Address
Assignment
Dec Hex Dec Hex Space
0 0 0 000 sp Reset:Initial SSP
- — 4 004 SP Reset:Initial PC
2 2 8 008 SD Bus Error
3 3 12 00C SD Address Error
4 4 16 010 sSD Illegal Instruction
5 5 20 014 sD Zero Divide
6 6 24 018 SD CHK Instruction
7 7 28 01C SD | TRAPV Instruction
8 8 32 020 SD Privilege Violation
9 9 36 024 SD Trace
10 A 40 028 SD Line 1010 Emulator
i B 44 02¢C SD_ |Line 1111 Emulator
12* C 48 030 sD (Unassigned, Reserved)
13* D 52 034 SD (Unassigned, Reserved)
14* E 56 038 SD {Unassigned, Reserved)
15 F 60 03C SD Uninitialized Interrupt Vector
* 64 040 sD (Unassigned, Reserved)
16t0 23 101017 95 05f _
24 18 96 060 sD Spurious Interrupt
25 19 100 064 SD Level 1Interrupt Autovector
26 1A 104 068 SD Level 2 Interrupt Autovector
27 1B 108 06C SD Level 3 Interrupt Autovector
28 1C 112 070 sb Level 4 Interrupt Autovector
29 1D 116 074 sD Level 5 Interrupt Autovector
30 1E 120 078 SD Level 6 Interrupt Autovector
31 1F 124 07C SD Level 7 Interrupt Autovector
32t047 | 2010 2F 128 080 SD | TRAP Instruction Vectors
191 OBF -
. 192 0Co SD [(Unassigned, Reserved)
48 10 63 30 to 3F 255 OFF _
256 100 sD User Interrupt Vectors
64t0 255 40to FF 1023 3FF _

* Vector numbers 12, 13, 14, 16 to 23, and 48 to 63 are re-served for
future enhancements. No user peripheral devices should be assigned
these numbers.

MPU00-63
M 9097249 00Ou?74a84 T39 IR

TOSHIBA TMP68HC000

5.2.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally
generated exceptions are the interrupts and the bus error and reset requests. The
interrupts are requests from peripheral devices for processor action while the bus error
and reset inputs are used for access control and processor restart. The internally
generated exceptions come from instructions, or from address errors or tracing. The trap
(TRAP) , trap on overflow (TRAPV) , check data register against upper bounds (CHK),
and divide (DIV) instructions all can generate exceptions as part of their instruction
execution. In addition, illegal instructions, word fetches from odd addresses, and
privilege violations cause exceptions. Tracing behaves like a very high-priority
internally-generated interrupt after each instruction execution.

5.2.3 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal
copy is made of the status register. After the copy is made, the S bit is asserted, putting
the processor into the supervisor privilege state. Also, the T bit is negated which will
allow the exception handler to execute unhindered by tracing. For the reset and
interrupt exceptions, the interrupt priority mask is also updated.

In the second step, the vector number of the exception is determined. For interrupts,
the vector number is obtained by a processor fetch and classified as an interrupt
acknowledge. For all other exceptions, internal logic provides the vector number. This
vector number is then used to generate the address of the exception vector.

The third step is save the current processor status, except for the reset exception. The
current program counter value and the saved copy of the status register are stacked
using the supervisor stack pointer as shown in Figure 5.4. The program counter value
stacked usually points to the next unexecuted instruction; however, for bus error and
address error, the value stacked for the program counter is unpredictable, and may be
incremented from the address of the instruction which caused the error. Additional
information defining the current context is stacked for the bus error and address error
exceptions.

The last step is the same for all exceptions. The new program counter value is fetched
from the exception vector. The processor then resumes instruction execution. The
instruction at the address given in the exception vector is fetched, and normal
instruction decoding and execution is started.

MPU00-64
B 9097249 0047485 975 I

TOSHIBA TMP68HC000

Status Register
BP—~ Y grste Higher

High Addresses

Figure 5.4 Exception Stack Order
(Groups 1 and 2)

5.2.4 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions
arise simultaneously. Exceptions can be grouped according to their occurrence and
priority. The group 0 exceptions are reset, bus error, and address error. These
exceptions cause the instruction currently being executed to be aborted and the
exception processing to commence within two clock cycles.

The group 1 exceptions are trace and interrupt, as well as the privilege violations and
illegal instruction. These exceptions allow the current instruction to execute to
completion, but pre-empt the execution of the next instruction by forcing exception
processing to occur (privilege violations and illegal instructions are detected when they
are the next instruction to be executed) . The group 2 exception occur as part of the
normal processing of instructions. The TRAP, TRAPV, CHK, and zero divide exceptions
are in this group. For these exceptions, the normal execution of an instruction may lead
to exception processing.

Group 0 exceptions have highest priority, while group 2 exceptions have lowest
priority. Within group 0, reset has highest priority, followed by address error and then
bus error. Within group 1, trace has priority over external interrupts, which