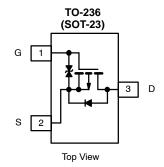


Vishay Siliconix

P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY							
V _{(BR)DSS(min)} (V)	$r_{DS(on)}(\Omega)$	V _{GS(th)} (V)	I _D (mA)				
-60	6 @ V _{GS} = -10 V	−1 to −3.0	-185				

FEATURES


- High-Side Switching
- Low On-Resistance: 6 Ω
- Low Threshold: −2 V (typ)
- Fast Swtiching Speed: 20 ns (typ)
- Low Input Capacitance: 20 pF (typ) Easily Driven Without Buffer
- Gate-Source ESD Protection

BENEFITS

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Power Supply Converter Circuits
- Solid State Relays

Marking Code: 6Kwll

6K = Part Number Code for TP0610K w = Week Code // = Lot Traceability

Ordering Information: TP0610K-T1

TP0610K-T1—E3 (Lead (Pb)-Free)

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter		Symbol	Limit	Unit			
Drain-Source Voltage		V _{DS}	-60	V			
Gate-Source Voltage		V_{GS}	±20	1			
Continuous Drain Current ^a	T _A = 25°C		-185				
	T _A = 100°C	I _D	-115	mA			
Pulse Drain Current ^b		I _{DM}	-800	1			
Power Dissipation ^a	T _A = 25°C	D	350	mW			
	T _A = 100°C	- P _D	140	11100			
Maximum Junction-to-Ambient ^a		R _{thJA}	350	°C/W			
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C			

Notes

Surface mounted on FR4 board.

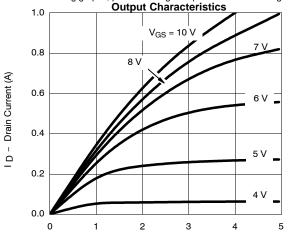
b. Pulse width limited by maximum junction temperature.

Vishay Siliconix

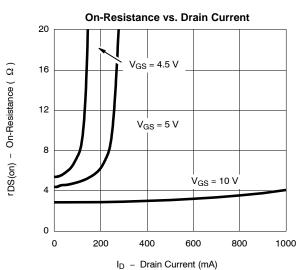
SPECIFICATIONS (TA	SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Static	•								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$	-60						
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-1		-3.0				
Gate-Body Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 10	μΑ			
		$V_{DS}=0~V,~V_{GS}=~\pm~10~V$			±200	nA			
	I _{GSS}	V_{DS} = 0 V, V_{GS} = \pm 10 V, T_J = 85°C			±500				
		V_{DS} = 0 V, V_{GS} = ± 5 V			± 100				
Zero Gate Voltage Drain Current		$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}$			-25				
	DSS	$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 85^{\circ}\text{C}$			-250				
On-State Drain Current ^a		$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}$	-50			mA			
	I _{D(on)}	$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}$	-600						
Drain-Source On-Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ mA}$			10	Ω			
		$V_{GS} = -10 \text{ V}, I_D = -500 \text{ mA}$			6				
		V_{GS} = -10 V, I_D = -500 mA, T_J = 125°C			9				
Forward Transconductancea	9 _{fs}	$V_{DS} = -10 \text{ V}, I_D = -100 \text{ mA}$	80			mS			
Diode Forward Voltage ^a	V _{SD}	$I_S = -200 \text{ mA}, V_{GS} = 0 \text{ V}$			-1.4	V			
Dynamic			•	•					
Total Gate Charge	Qg	V_{DS} = -30 V, V_{GS} = -15 V, $I_D \cong$ -500 mA		1.7		nC			
Gate-Source Charge	Q _{gs}			0.26					
Gate-Drain Charge	Q _{gd}			0.46					
Input Capacitance	C _{iss}	V_{DS} = -25 V, V_{GS} = 0 V, f = 1 MHz		23		pF			
Output Capacitance	C _{oss}			10					
Reverse Transfer Capacitance	C _{rss}			5					
Switching ^b	•		•	•	•	•			
Turn-On Time	t _{ON}	V_{DD} = -25 V, R_L = 150 Ω I_D \cong -200 mA, V_{GEN} = -10 V R_g = 10 Ω		20		ns			
Turn-Off Time	t _{OFF}			35					

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TPJO60

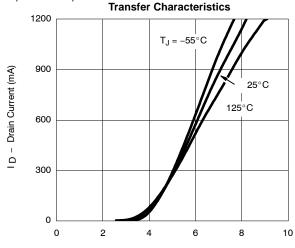


TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

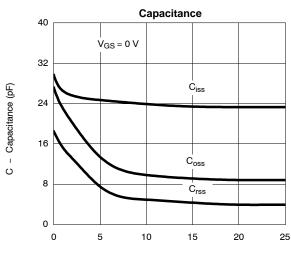

For the following graphs, p-channel negative polarities for all voltage and current values are represented as positive values.

Output Characteristics

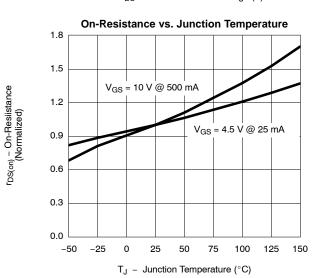
Transf



 V_{DS} - Drain-to-Source Voltage (V)

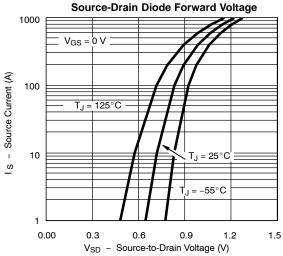


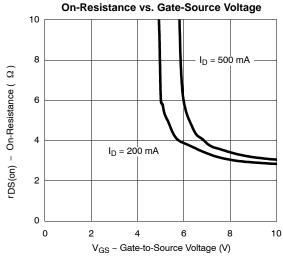
15 I_D = 500 mA V_{GS} - Gate-to-Source Voltage (V) 12 $V_{DS} = 30 V$ $V_{DS} = 48 V$ 9 6 3 0 0.0 0.3 0.6 1.2 1.5 1.8 Q_g - Total Gate Charge (nC)

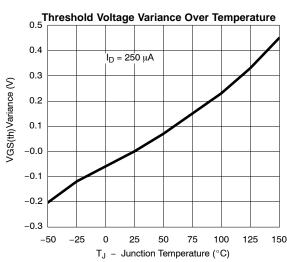

Gate Charge

V_{GS} - Gate-to-Source Voltage (V)

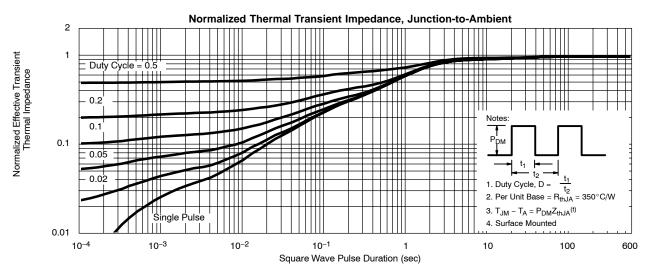
V_{DS} - Drain-to-Source Voltage (V)




Vishay Siliconix



TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)


For the following graphs, p-channel negative polarities for all voltage and current values are represented as positive values.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71411.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com