THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

ZN448/ZN449

8-BIT MICROPROCESSOR COMPATIBLE A-D CONVERTER

The ZN448 and ZN449 are 8-bit successive approximation A-D converters designed to be easily interfaced to microprocessors. All active circuitry is contained on-chip including a clock generator and stable 2.5 V bandgap reference, control logic and double buffered latches with reference.

Only a reference resistor and capacitor, clock resistor and capacitor and input resistors are required for operation with either unipolar or bipolar input voltage.

FEATURES

- Easy Interfacing to Microprocessor, or operates as a 'Stand-Alone' Converter
- Fast: 9 microseconds Conversion time Guaranteed
- Choice of Linearity: 0.5 LSB - ZN448, 1 LSB - ZN449
- On-Chip Clock
- Choice of On-Chip or External Reference Voltage
- Unipolar or Bipolar Input Ranges
- Commercial Temperature Range

ORDERING INFORMATION

Device type	Linearity error (LSB)	Operating temperature	Package
ZN448E	0.5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DP 18
ZN449D	1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MP18
ZN449E	1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DP 18

Fig. 1 Pin connection - top view

Fig. 2 System diagram

ZN448/9

ABSOLUTE MAXIMUM RATINGS

Supply voltage Vcc
Max. voltage, logic and Vref input Operating temperature range Storage temperature range
$+7$

+ Vcc
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (MP and DP package)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (at $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{fc} \mathrm{c} \mathrm{K}=1.6 \mathrm{MHz}$ unless otherwise specified).

Parameter	Min.	Typ.	Max.	Units	Conditions
ZN448 Linearity error Differential linearity error Zero transition (00000000 $\rightarrow 00000001$) Full-scale \rightarrow transition (11111110 11111111)	$\begin{gathered} 12 \\ 2.545 \end{gathered}$	$\begin{gathered} - \\ 15 \\ 2.550 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 0.75 \\ 18 \\ \\ 2.555 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \text { LSB } \\ \mathrm{mV} \\ \\ \mathrm{~V} \end{gathered}$	DP package $V_{\text {REF }}=2.560 \mathrm{~V}$
ZN449 Linearity error Differential linearity error Zero transition (00000000 $\rightarrow 00000001$) Full-scale \rightarrow transition (11111110 11111111)	$\begin{gathered} - \\ - \\ 7 \\ 10 \\ 2.542 \end{gathered}$	$\begin{gathered} 12 \\ 15 \\ 2.550 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 \\ 17 \\ 20 \\ 2.558 \end{gathered}$	LSB LSB mV mV V	MP package DP package $V_{\text {REF }}=2.560 \mathrm{~V}$
All Types Resolution Linearity temperature coefficient Differential linearity temperature coefficient Full-scale temperature coefficient Zero temperature coefficient Reference input range Supply voltage Supply current Power consumption	8 - - 1 4.5	$\begin{gathered} \pm 3 \\ \pm 6 \\ \pm 2.5 \\ \pm 8 \\ - \\ 5 \\ 25 \\ 125 \end{gathered}$	3 5.5 40 200	bits ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ V V mA mW	
Comparator Input current Input resistance Tail current Negative supply Input voltage	$\begin{gathered} 25 \\ -3 \\ -0.5 \end{gathered}$	$\begin{gathered} 1 \\ 100 \\ 65 \\ -5 \end{gathered}$	$\begin{gathered} - \\ - \\ 150 \\ -30 \\ +3.5 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{k} \Omega \\ \mu \mathrm{~A} \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=+3 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=82 \mathrm{k} \Omega \\ & \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$
On-chip reference Output voltage ZN448 ZN449 Slope resistance $V_{\text {REF }}$ temperature coefficient Reference current	$\begin{gathered} 2.520 \\ 2.520 \\ - \\ - \\ 4 \end{gathered}$	$\begin{gathered} 2.550 \\ 2.550 \\ 0.5 \\ 50 \end{gathered}$	$\begin{gathered} 2.580 \\ 2.600 \\ 2 \\ - \\ 15 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \Omega \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{R}_{\text {REF }}=390 \Omega \\ & \mathrm{C}_{\text {REF }}=4 \mu 7 \end{aligned}$

ELECTRICAL CHARACTERISTICS (Cont.)

Parameter	Min.	Typ.	Max.	Units	Conditions
Clock					
On-chip clock frequency	-	-	1	MHz	
Clock frequency temperature coefficient		+0.5		$\% /{ }^{\circ} \mathrm{C}$	
Clock resistor			2	k Ω	
Maximum external clock frequency	0.9		1	MHz	
Clock pulse width	500			ns	
High level input voltage $\mathrm{V}_{\mathbf{\prime}}$	4			V	
Low level input voltage VIL			0.8	V	
High level input current lı			800	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+4 \mathrm{~V}, \mathrm{~V}_{\text {cC }}=\mathrm{MAX}$
Low level input current IIL			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}^{\text {IN }}=+0.8 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{MAX}$
Logic (over operating temperature range)					
Convert input					
High level input voltage $\mathrm{V}_{\mathbf{I}}$	2	-		V	
Low level input voltage VIL		-	0.8	V	
High level input current lı		300	-	$\mu \mathrm{A}$	$\mathrm{V}_{1}=+2.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{MAX}$
Low level input current IIL		± 10		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}^{\text {IN }}=+0.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}^{\text {cc }}=\mathrm{MAX}$
RD input					
High level input voltage $\mathrm{V}_{\mathbf{I H}}$	2			V	
Low level input voltage VIL			0.8	V	
High level input current lıw		+150		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+2.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{MAX}$
Low level input current IIL		-300		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}^{\text {IN }}=+0.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}^{\text {cc }}=\mathrm{MAX}$
High level output voltage Vон	2.4			V	$\mathrm{I}_{\mathrm{OH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{MAX}$
Low level output voltage Vol			0.4	V	$\mathrm{l}_{\mathrm{OL}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{MAX}$
High level output current Іон			-100	$\mu \mathrm{A}$	
Low level output current loL			1.6	mA	
Three-state disable output leakage			2	$\mu \mathrm{A}$	$V_{\text {OUT }}=+2 \mathrm{~V}$
Input clamp diode voltage			-1.5	V	
RD input to data output		180	250	ns	
Enable/disable delay times TE1	180	210	260	ns	
Teo	60	80	100	ns	
To1	80	110	140	ns	
Too	60	80	100	ns	
Convert pulse width twr	200			ns	
WR input to BUSY output	-	-	250	ns	

GENERAL CIRCUIT OPERATION

The ZN448/9 utilises the successive approximation technique. Upon receipt of a negative-going pulse at the WR input the BUSY output goes low, the MSB is set to 1 and all other bits are set to 0 , which produces an output voltage of $\mathrm{V}_{\text {REF/2 }}$ from the DAC. This is compared to the input voltage V_{IN}; a decision is made on the next negative clock edge to reset the
MSB to 0 if $\frac{V_{\text {REF }}}{2}<V_{\text {IN }}$ or leave it set to 1 if $\frac{V_{\text {REF }}}{2}<V_{\text {IN }}$. Bit 2 is set to 1 on the same clock edge, producing an output from the DAC of $\frac{V_{\text {REF }}}{4}$ or $\frac{V_{\text {REF }}}{2}+\frac{V_{\text {REF }}}{4}$ depending on the state of the MSB. This voltage is compared to V_{IN} and on the next clock edge a decision is made regarding bit 2 , whilst bit 3 is set to 1 . This procedure is repeated for all eight bits. On the eighth negative clock edge BUSY goes high indicating that the conversion is complete.

During a conversion the RD input will normally be held high to keep the three-state buffers in their high impedance state. Data can be read out by taking RD low, thus enabling the three-state output. Readout is non-destructive.

CONVERSION TIMING

The ZN448/9 will accept a low-going CONVERT pulse, which can be completely asynchronous with respect to the clock, and will produce valid data between 7.5 and 8.5 clock pulses later depending on the relative timing of the clock and CONVERT signals. Timing diagrams for the conversion are shown in Fig. 3.

The converter is cleared by a low-going CONVERT pulse, which sets the most significant bit and results all the other bits and the BUSY flag. Whilst the CONVERT input is low the MSB output of the DAC is continuously compared with the analogue input, but otherwise the converter is inhibited.

ZN448/9

After the CONVERT input goes high again the MSB decision is made and the successive approximation routine runs to completion.

The CONVERT pulse can be as short as 200ns; however the MSB must be allowed to settle for at least 550ns before the MSB decision is made. To ensure that this criterion is met even with short CONVERT pulses the converter waits, after the CONVERT input goes high, for a rising clock edge followed by a falling clock edge, the MSB decision being taken on the falling clock edge. This ensures that the MSB is allowed to settle for at least half a clock period, or 550 ns at maximum
clock frequency. The CONVERT input is not locked out during a conversion and if it is oulsed low at any time the converter will restart.

The BUSY output goes high simultaneously with the LSB decision, at the end of a conversion indicating data valid. Note that if the three-state data outputs are enabled during a conversion the valid data will be available at the outputs after the rising edge of the BUSY signal. If, however the outputs are not enabled until after BUSY goes high then the data will be subject to the propagation delay of the three-state buffers. (See under DATA OUTPUTS)

Fig. 2a

Fig. 2b

Fig. 3 ZN448/9 timing diagram

If a free-running conversion is required, then the converter can be made to cycle by inverting the BUSY output and feeding it to WR. To ensure that the converter starts reliably after powerup an initial start pulse is required. This can be ensured by using a NOR gate instead of an inverter and feeding it with a positive-going pulse which can be derived from a simple RC network that gives a single pulse when power is applied, as shown in Fig.4a.

The ADC will complete a conversion on every eighth clock pulse, with the BUSY output going high for a period determined by the propagation delay of the NOR gate, during
which time the data can be stored in a latch. The time available for storing data can be increased by inserting delays into the inverter path.

A timing diagram for the continuous conversion mode is shown in Fig.3b.

As the BUSY output uses a passive pull-up the rise time of this output depends on the RC time constant of the pull-up resistor and load capacitance. In the continuous conversion mode the use of a 4 k 7 external pull-up resistor is recommended to reduce the risetime and ensure that a logic 1 level is reached.

Fig.4a Circuit for continuous conversion

Fig.4b Timing for continuous conversion

DATA OUTPUTS

The data outputs are provided with three-state buffers to allow connection to a common data bus. An equivalent circuit is shown in Fig.5. Whilst the RD input is high both output transistors are turned off and the ZN448/9 presents only a high impedance load to the bus.

When $\underline{R D}$ is low the data outputs will assume the logic states present at the outputs of the successive register.

A test circuit and timing diagram for the output enable/disable delays are given in Fig.6.

Fig. 5 Data output

Fig. 6 Output enable/disable delays

The BUSY output, shown in Fig.7, utilises a passive pull-up for CMOS/TTL compatibility. This allows up to four BUSY outputs
to be wire-ANDed together to form a common interrupt line.

Fig. 7 BUSY output

ON-CHIP CLOCK

The on-chip clock operates with only a single external capacitor connected between pin 3 and ground, as shown in Fig.8a. A graph of typical oscillator frequency versus capacitance is given in Fig.9. The oscillator frequency may be trimmed by means of an external resistor in series with the capacitor, as shown in Fig.8b. However, due to processing tolerance, the absolute clock frequency may vary
considerably between devices. For optimum accuracy and stability of the oscillator frequency, it may be possible to use a crystal or ceramic resonator with suitable load components, as shown in Fig.8c. The final option is to overdrive the oscillator input with an external clock signal from a TTL or CMOS gate, as shown in Fig.8d.

Fig. 8 Clock circuit external components

Fig. 9 Typical clock frequency $\vee C_{C K}\left(R_{C K}=0\right)$

ANALOG CIRCUITS

D-A converter

The converter is of the voltage switching type and uses an R2R ladder network as shown in Fig.10. Each element is connected to either OV or $\mathrm{V}_{\text {REF IN }}$ by transistor voltage switches specially designed for low offset voltage (1 mV).

A binary weighted voltage is produced at the output of the R 2R ladder.
V_{OS} is a small offset voltage that is produced by the device supply current flowing in the package lead resistance. The offset will normally be removed by the setting up procedure and since the offset temperature coefficient is low $\left(8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ the effect on accuracy will be neglible.

The D-A output range can be considered to be $0-V_{\text {REF IN }}$ through an output resistance R (4k).

$$
\mathrm{D} \text { to } \mathrm{A} \text { output }=\frac{\mathrm{n}}{256}\left(\mathrm{~V}_{\text {REF IN }}-\mathrm{V}_{\text {OS }}\right)+\mathrm{V}_{\text {OS }}
$$

where n is the digital input to the D-A from the successive approximation register.

Fig. 10 R-2R ladder network

REFERENCE

(a) Internal reference

The internal reference is an active bandgap circuit which is equivalent to a 2.5 V Zener diode with a very low slope impedance (Fig.11). A Resistor ($\mathrm{R}_{\text {REF }}$) should be connected between pins 8 and 10.

The recommended value of 390Ω will supply a nominal reference current of (5-2.5)/0.39=6.4mA. A stabilising/ decoupling capacitor, $\mathrm{C}_{\text {REF }}(4 \mu 7)$, is required between pins 8 and 9. For internal reference operation $\mathrm{V}_{\text {ref out }}$ (pin 8) is connected to $\mathrm{V}_{\text {REF IN }}$ (pin 7).

UP to five ZN448/9's may be driven from one internal reference, there being no need to reduce $R_{\text {REF }}$. This useful
feature saves power and gives excellent gain tracking between the converters.

Alternatively the internal reference can be used as the reference voltage for other external circuits and can source or sink up to 3 mA .

(b) External reference

If required an external reference in the range +1.5 to +3.0 V may be connected to $\mathrm{V}_{\text {REF IN }}$. The slope resistance of such a reference source should be less than 2.5Ω, where n is the
number of converters supplied.

Fig. 11 Internal voltage reference

RATIOMETRIC OPERATION

If the output from a transducer varies with its supply then an external reference for the ZN4448/9 should be derived from the same supply. The external reference can vary from +1.5 to +3.0 V . The $\mathrm{ZN} 448 / 9$ will operate if $\mathrm{V}_{\text {REF IN }}$ is less than +1.5 V but reduced overdrive to the comparator will increase its delay and so the conversion time will need to be increased.

COMPARATOR

The ZN448/9 contains a fast comparator, the equivalent input circuit of which is shown in Fig.12. A negative supply voltage is required to supply the tail current of the comparator. However as this is only 25 to $150 \mu \mathrm{~A}$ and need not be well stabilised it can be supplied by a simple diode pump circuit driven from the BUSY output.

Fig. 12 Comparator equivalent circuit

Fig. 13 Diode pump circuits to supply comparator tail current

Several suitable circuits are shown in Fig.13. The principle of operation is the same in each case. Whilst the BUSY output is high, capacitor C 1 is charged to about $4-4.5 \mathrm{~V}$. During a conversion the BUSY output goes low and the upper end of C1 is thus also pulled low. The lower end of C1 therefore applies about -4 V to R2, thus providing the tail current for the comparator. The time constant R2. C1 is chosen according to the clock frequency so that droop of the capacitor voltage is not significant during a conversion.

The constraint on using this type of circuit is that C 1 must be recharged whilst the BUSY output is high. If the BUSY output
is high for greater than one converter clock period then the circuit of Fig. 13 a will suffice. If this is not the case, for example, in the continuous conversion mode, then the circuits of Figs. $13 b$ and 13c are recommended, since these can pump more current into the capacitor.

Where several ZN448/9's are used in a system the selfoscillating diode pump circuit Fig. 14 is recommeded. Alternatively, if a negative supply is available in the system then this may be utilised. A list of suitable resistor values for different supply voltages is given in Table 1.

Fig. 14 Diode pump circuit to supply comparator tail current for up to five ZN448/9's

$\mathrm{V}-$ (volts)	$\mathrm{R}_{\mathrm{EXT}}(\mathrm{k} \Omega$)
3	47
5	82
10	150
12	180
15	220
20	330
25	390
30	470

Table 1

ZN448/9

ANALOG INPUT RANGES

The basic connection of the ZN448/9 shown in Fig. 15 has an analogue input range 0 to $\mathrm{V}_{\text {REF IN }}$ which, in some applications, may be made available from previous signal conditioning/ scaling circuits. Input voltage ranges greater than this are accommodated by providing an attenuator on the comparator input, whilst for smaller input ranges the signal must be amplified to a suitable level.

Bipolar input ranges are accommodated by off-setting the analogue input input range so that the comparator always sees a positive input voltage.

Fig. 15 External components for basic operation

UNIPOLAR OPERATION

The general connection for unipolar operation is shown in Fig. 16.

The values of R_{1} and R_{2} are chosen so that $V_{\text {IN }}=V_{\text {REF IN }}$ when the analog input $\left(A_{\text {IN }}\right)$ is at full-scale.

The resulting full-scale range is given by:
$A_{I N} F S=\left(1+\frac{R_{1}}{R_{2}}\right), V_{\text {REF IN }}=G \cdot V_{\text {REF IN }}$.
To match the ladder resistance $R_{1} / R_{2}\left(R_{1 N}\right)=4 k$.
The required nominal values of R_{1} and R_{2} are given by $R_{1}=$ $4 \mathrm{Gk}, \mathrm{R}_{2}=\frac{4 \mathrm{G}}{\mathrm{G}-1} \mathrm{k}$

Fig. 16 General unipolar input connections

Using these relationships a table of nominal values of R_{1} and R_{2} can be constructed for $\mathrm{V}_{\text {REF IN }}=2.5 \mathrm{~V}$.

Input range	G	R_{1}	R_{2}
+5 V	2	8 k	8 k
+10 V	4	16 k	5.33 k

Gain adjustment

Due to tolerance in R_{1} and R_{2}, tolerance in $V_{\text {REF }}$ and the gain (full-scale) error of the DAC, some adjustment should be incorporated into R_{1} to calibrate the full-scale of the converter. When used with the internal reference and 2% resistors a preset capable of adjusting R_{1} by at least $\pm 5 \%$ of its nominal value is suggested.

Zero adjustment

Due to offsets in the DAC and comparator the zero (0 to 1) code transition would occur with typically 15 mV applied to the comparator input, which correpsonds to 1.5 LSB with a 2.56 V reference.

Zero adjustment must therefore be provided to set the zero transition to its correct value of +0.5 LSB or 5 mV with a 2.56 V reference. This is achieved by applying an adjustable positive offset to the comparator input via P2 and R3. The values shown are suitable for all input ranges greater than 1.5 times $V_{\text {REF IN }}$.

Practical circuit values for +5 and +10 V input ranges are given in Fig.17, which incorporates both zero and gain adjustments.

Fig. 17 Unipolar operation component values

Unipolar adjustment prodedure

(i) Apply continuous convert pulses at intervals long enough to allow a complete conversion and monitor the digital outputs.
(ii) Apply full-scale minus 1.5 LSB to $\mathrm{A}_{\text {IN }}$ and adjust off-set until the bit 8 (LSB) output just flickers between 0 and 1 with all other bits at 0 .
(iii) Apply 0.5 LSB to A_{IN} and adjust zero until 8 bit just flickers between 0 and 1 with all other bits at 1 .

Unipolar setting up points

Input range, + FS	0.5 LSB	$\mathrm{FS}-1.5 \mathrm{LSB}$
+5 V	9.8 mV	4.9707 V
+10 V	19.5 mV	9.9414 V

$1 \mathrm{LSB}=\frac{\mathrm{FS}}{256}$
Bipolar logic coding

Analogue input $\left(\mathrm{A}_{\text {IN }}\right)$ (Nominal code centre value)	Output code (offset binary)
FS - 1LSB	11111111
FS - 2LSB	1111110
0.75FS	11000000
0.5FS + 1LSB	10000001
0.5FS	10000000
0.5FS - 1LSB	0111111
0.25FS	01000000
1LSB	00000001

BIPOLAR OPERATION

For bipolar operation the input to the ZN448/9 is offset by half full-scale by connecting a resistor R_{3} between $V_{\text {REF IN }}$ and $V_{\text {IN }}$ (Fig.18).

Fig. 18 Basic bipolar input connection

When $A_{\mathbb{I N}}=-F S, V_{\mathbb{I N}}$ needs to be equal to zero.
When $A_{\text {IN }}=+F S, V_{\text {IN }}$ needs to be equal to $\mathrm{V}_{\text {REF IN }}$.
If the full-scale range is $\pm G$. $V_{\text {REF IN }}$ then $R_{1}=(G-1) . R_{2}$ and $R_{1}=G . R_{3}$ fulfil the required conditions.

To match the ladder resistance, $R_{1} / R_{2} / R_{3}\left(=R_{\text {IN }}\right)=4 k$

Thus the nominal values of R_{1}, R_{2}, R_{3} are given by $R_{1}=8 G k$, $R_{2}=8 G /(G-1) k, R_{3}=8 k$.

A bipolar range of $\pm \mathrm{V}_{\text {REF IN }}$ (which corresponds to the basic unipolar range 0 to $+V_{\text {REF IN }}$) results if $R_{1}=R_{3}=8 k$ and $R_{2}=\infty$.

Assuming the $\mathrm{V}_{\text {REFIN }}=2.5 \mathrm{~V}$ the nominal values of resistors for ± 5 and $\pm 10 \mathrm{~V}$ input ranges are given in the following table.

Input range	G	R_{1}	R_{2}	R_{3}
+5 V	2	16 k	16 k	8 k
+10 V	4	32 k	10.66 k	8 k

Minus full-scale (offset) is set by adjusting R_{1} about its nominal value relative to R_{3}. Plus full-scale (gain) is set by adjusting R_{2} relative to R_{1}.

Note that in the $\pm 5 \mathrm{~V}$ case R_{3} has been chosen as 7.5 k (instead of 8.2 k) to obtain a more symmetrical range of adjustment using standard potentiometers.

Practical circuit realisations are given in Fig.19.

Fig. 19 Bipolar operation component values

Bipolar adjustment prodedure

(i) Apply continuous SC pulses at intervals long enough to allow a complete conversion and monitor the digital outputs.
(ii) Apply -(FS -0.5LSB) to $\mathrm{A}_{\text {IN }}$ and adjust off-set until the bit 8 (LSB) output just flickers between 0 and 1 with all other bits at 0 .
(iii) Apply +(FS -1.5LSB) to $A_{\text {IN }}$ and adjust gain until the 8 bit just flickers between 0 and 1 with all other bits at 1 .
(iv) Repeat step (ii).

Bipolar setting up points

Input range, $\pm \mathrm{FS}$	$-(\mathrm{FS}-0.5 \mathrm{LSB})$	$+(\mathrm{FS}-1.5 \mathrm{LSB})$
+5 V	-4.9805 V	+4.9414 V
+10 V	-9.9609 V	+9.8828 V

$1 \mathrm{LSB}=2 \mathrm{FS}$ 256

Bipolar logic coding

Analogue input $\left(\mathrm{A}_{\mathrm{IN}}\right.$) (Nominal code centre value)	Output code (offset binary)
+(FS - 1LSB)	11111111
+(FS - 2LSB)	11111110
+0.5FS	11000000
+1LSB	10000001
0	10000000
-1LSB	01111111
-0.5FS	01000000
-(FS - 1LSB)	00000001
-FS	00000000

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom.
Tel: (0793) 518000
Fax: (0793) 518411
GEC PLESSEY SEMICONDUCTORS
P.O. Box 660017

1500 Green Hills Road,
Scotts Valley, California 95067-0017,
United States of America.
Tel: (408) 4382900
Fax: (408) 4385576

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax : (1) 64460607
- GERMANY Munich Tel: (089) 3609 06-0 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA. Tel (408) 4382900 Fax: (408) 4387023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm, Tel: 4687029770 Fax: 4686404736
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (0793) 518510 Fax : (0793) 518582
These are supported by Agents and Distributors in major countries world-wide.
© GEC Plessey Semiconductors 1994 Publication No. DS3013 Issue No. 2.2 February 1994

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded
This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information
and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

