

MECHANICAL DATA

Dimensions in mm (inches)

TO18 (TO-206AA) PACKAGE

Underside View

Pin 1 = Emitter Pin 3 = Collector Pin 2 = Base

BIPOLAR NPN SILICON AMPLIFIER TRANSISTORS

FEATURES

- SILICON PLANAR EPITAXIAL NPN **TRANSISTOR**
- HERMETICALLY SEALED METAL PACKAGE
- CECC SCREENING OPTIONS AVAILABLE
- SPACE QUALITY LEVELS AVAILABLE

APPLICATIONS:

The 2N930 is designed for small general purpose and amplifier applications

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise stated)

V_{CBO}	Collector – Base Voltage	45V
V_{CEO}	Collector – Emitter Voltage	45V
V_{EBO}	Emitter – Base Voltage	5V
$I_{\mathbb{C}}$	Collector Current	30mA
P_{D}	Total Device Dissipation @ T _A =25°C	0.5W
	Derate above 25°C	350°C / W
P_{D}	Total Device Dissipation @ T _C =25°C	1.2W
	Derate above 25°C	146°C / W
T_{STG} , T_{J}	Operating and Storage Temperature Range	−65 to +200°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter		Test Conditions		Тур.	Max.	Unit
	OFF CHARACTERISTICS					1	
V _{(BR)CEO*}	Collector – Emitter Breakdown Voltage	$I_C = 10mA$	I _B = 0	45			
V _{(BR)CBO}	Collector – Base Breakdown Voltage	$I_C = 10\mu A$	$I_E = 0$	45			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	$I_E = 10\mu A$	I _C = 0	5			
I _{CEO}	Collector Cut-off Current	$V_{CE} = 5V$	$I_B = 0$			2	nA
I _{CBO}	Collector – Cut-off Current	V _{CB} = 45V	I _E = 0			10	
I _{CES}	Collector – Cut-off Current	V _{CE} = 45V	$V_{BE} = 0$			10	nA
			T _A =170°C			10	μΑ
I _{EBO}	Emitter – Cut-off Current	$V_{BE} = 5V$	I _C = 0			10	nA
	ON CHARACTERISTICS	I				I	
V _{CE(sat)*}	Collector – Emitter Saturation Voltage	I _C = 10mA	$I_B = 0.5 \text{mA}$			1	_ V
V _{BE(sat)*}	Base – Emitter Saturation Voltage	I _C = 10mA	$I_B = 0.5 \text{mA}$	0.7		0.9	
h _{FE} *	DC Current Gain	I _C = 10μA	V _{CE} = 5V	100		300	
			T _A = - 55°C	20			
		I _C = 500μA	$V_{CE} = 5V$	150			
		I _C = 10mA	V _{CE} = 5V	600			
	SMALL SIGNAL CHARACTERISTIC	S					
f _T	Current Gain Bandwidth Product	I _C = 500μA	V _{CE} = 5V	30			MHz
		f = 30MHz					
C _{ob}	Output Capacitance	I _E = 1mA	$V_{CB} = 5V$		8	0	pF
		f = 1KHz				0	
h _{ib}	Input Impedance		V _{CB} = 5V	25		32	Ω
h _{rb}	Voltage Feedback Ratio	I _E = 1mA				600	x10 ⁻⁶
h _{ob}	Output Admittance	f = 1KHz				1	μmho
h _{fe}	Small Signal Current Gain			150		600	_
NF	Noise Figure	V _{CE} = 5V	$I_C = 10\mu A$				
		$R_S = 10k\Omega$				3	dB
		f = 10Hz to 1	5.7kHz				

^{*} Pulse Test: $t_p \leq 300 \mu s, \ \delta \leq 2\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.