

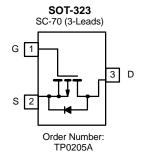
Vishay Siliconix

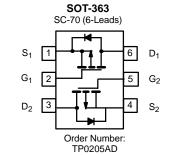
New Product

P-Channel 20-V (D-S) MOSFET, Low-Threshold

PRODUCT SUMMARY			
V _{DS} (V)	r _{DS(on)} (Ω)	I _D (mA)	
-20	$3.8 @ V_{GS} = -4.5 V$	-180	
	5.0 @ V _{GS} = -2.5 V	-100	

FEATURES


- High-Side Switching
- Low On-Resistance: 2.6 Ω (typ)
- Low Threshold: 0.9 V (typ)
- Fast Switching Speed: 35 ns
- 2.5 V or Lower Operation


BENEFITS

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Battery Voltage Operation

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories
- Battery Operated Systems
- Load/Power Switching-Cell Phones, PDA

Marking Code: TP0205A: A/ TP0205AD: C*wl*

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	TP0205A	TP0205AD	Unit	
Drain-Source Voltage		V _{DS}	-20		v	
Gate-Source Voltage		V _{GS}	±8			
Continuous Drain Current (T = 150°C) ^a	$T_A = 25^{\circ}C$		-180		mA	
Continuous Drain Current (1) = 150 C)	$T_A = 70^{\circ}C$	I _D	-140			
Pulsed Drain Current		I _{DM}	-500			
	$T_A = 25^{\circ}C$	PD	0.15	0.20 (Total)	w	
Maximum Power Dissipation ^a	$T_A = 70^{\circ}C$		0.10	0.13 (Total)	vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	TP0205A	TP0205AD	Unit		
Thermal resistance, Junction-to-Ambient ^a	R _{thJA}	833	625 (Total)	°C/W		

Notes

a. Surface Mounted on FR4 Board, t \leq 10 sec.

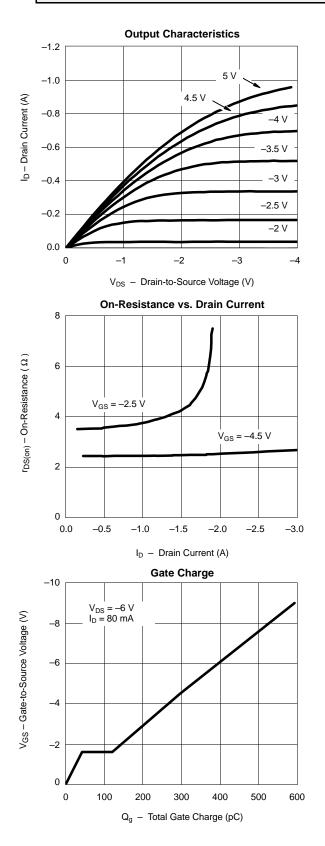
w = Week Code / = Lot Traceability

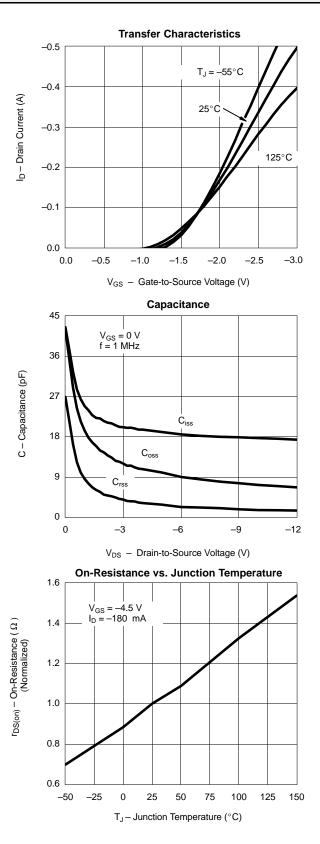
Vishay Siliconix

New Product

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter	Symbol	Test Condition	Min	Тур ^ь	Max	Unit	
Static							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 V, I_D = -10 \mu A$ -20		-24		V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -50 \ \mu A$	-0.4	-0.9	-1.5		
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±8 V		±2	±100		
		$V_{DS} = -20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$		-0.001	-100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55^{\circ}\text{C}$			-1	μA	
		$V_{GS} = -4.5 \text{ V}, V_{DS} = -8.0 \text{ V}$	-400			<u> </u>	
On-State Drain Current ^a	I _{D(on)}	V_{GS} = -2.5 V, V_{DS} = -5.0 V	-120			mA	
	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -180 \text{ mA}$		2.6	3.8	Ω	
Drain-Source On-State Resistance ^a		$V_{GS} = -2.5 \text{ V}, I_D = -75 \text{ mA}$		4.0	5.0		
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -2.5 \text{ V}, \text{ I}_{D} = -50 \text{ mA}$		200		mS	
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S} = -50$ mA, $V_{\rm GS} = 0$ V		-0.7	-1.2	V	
Dynamic			•	•	•		
Total Gate Charge	Qg			350	450	рС	
Gate-Source Charge	Q _{gs}	$V_{DS}{=}{-}5.0$ V, $V_{GS}{=}{-}4.5$ V, $I_{D}{=}{-}100$ mA		25			
Gate-Drain Charge	Q _{gd}			125			
Input Capacitance	C _{iss}			20		pF	
Output Capacitance	C _{oss}	$V_{DS} = -5.0$ V, $V_{GS} = 0$ V, f = 1 MHz		14			
Reverse Transfer Capacitance	C _{rss}	1		5			
Switching ^c				-			
Turn-On Delay Time	t _{d(on)}			7	12	ns	
Rise Time	tr	V_{DD} = -3.0 V, R _L = 100 Ω I _D = -0.25 A, V _{GEN} = -4.5 V, R _G = 10 Ω		25	35		
Turn-Off Delay Time	t _{d(off)}			19	30		
Fall Time	t _f			9	15		

Notes
a. Pulse test; pulse width ≤ 300 μs, duty cycle ≤ 2%.
b. For design only, not subject to production testing.
c. Switching time is essentially independent of operating temperature.

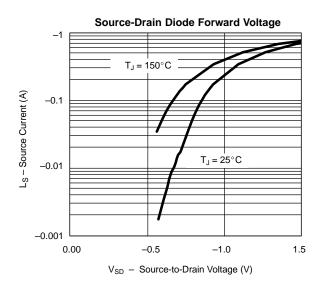

VPOJ

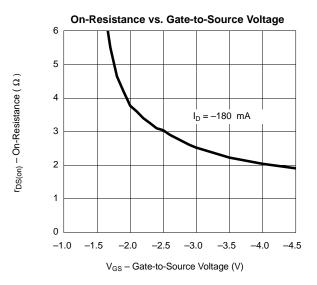


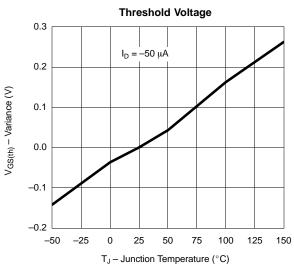
New Product

Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)


Document Number: 70869 S-04279—Rev. B, 16-Jul-01


Vishay Siliconix


New Product

TYPICAL CHARACTERISTICS (T_A = 25° C UNLESS OTHERWISE NOTED)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.